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Abstract: This study explores the antidiabetic potential of 72 natural compounds using molecular 

descriptors and QSAR modeling combined with machine learning techniques. The dataset includes 11 

experimentally obtained compounds and 61 from the literature, characterized by their IC50 values 

indicating 50% inhibition of α-glucosidase enzyme activity. Molecular descriptors were generated using 

ChemAxon’s MarvinSketch and PADEL software, narrowing down over 3000 descriptors to 23 

relevant features. Statistical analysis revealed significant multicollinearity among variables, 

necessitating the application of non-linear machine learning models, namely Random Forest and 

Gradient Boosting. These models demonstrated predictive capabilities with R² values of 0.7751 and 

0.8066, respectively, and highlighted molecular weight and the number of heteroatoms in ring structures 

as critical features influencing IC50 values. Despite the dataset's variability and limited size, the study 

underscores the potential of integrating QSAR and machine learning approaches to effectively predict 

the antidiabetic activity of natural compounds. The findings provide valuable insights for advancing 

computational methods in drug discovery.  

Keywords: antidiabetic potential; QSAR modeling; machine learning; natural compounds; α-

glucosidase inhibition.  
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1. Introduction 

Diabetes mellitus (DM) is a chronic metabolic disorder affecting millions worldwide 

and represents a significant public health concern. As of 2021, the International Diabetes 

Federation (IDF) reported that approximately 537 million adults globally were living with 

diabetes, a figure projected to reach 783 million by 2045 [1]. This rising prevalence highlights 

an urgent need for effective therapeutic agents to manage diabetes and its associated 

complications. Despite the availability of pharmacological treatments, their long-term use is 

often linked to adverse effects such as gastrointestinal discomfort, lactic acidosis, and drug 

resistance [2]. Furthermore, the economic burden of diabetes treatment, particularly in low- 

and middle-income countries, highlights the need to explore alternative and cost-effective 

therapeutic approaches [3]. 

One promising avenue in diabetes management is using plant-derived polyphenolic 

compounds, which have gained attention due to their structural diversity, bioavailability, and 
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relatively low toxicity. Polyphenols, including flavonoids and phenolic acids, have 

demonstrated antidiabetic properties through multiple mechanisms, such as enhancing insulin 

secretion, inhibiting carbohydrate-digesting enzymes, reducing glucose absorption, and 

exerting antioxidant and anti-inflammatory effects [4,5]. 

Flavonoids, a major subclass of polyphenols, include compounds such as quercetin, 

rutin, epicatechin, and catechin. These bioactive molecules are found in various fruits, 

vegetables, tea, and wine. Quercetin, for example, has been reported to improve insulin 

sensitivity and reduce oxidative stress, while rutin has shown potential in lowering blood 

glucose levels and modulating lipid metabolism [6,7]. Epicatechin, a predominant polyphenol 

in green tea and cocoa, has been linked to improved glucose uptake and insulin secretion [8,9]. 

Catechin, another abundant flavonoid, has demonstrated antioxidant and anti-inflammatory 

properties that contribute to better glycemic control [9,10]. 

Phenolic acids, another important category of polyphenols, include compounds such as 

caffeic acid, vanillic acid, rosmarinic acid, and trans-cinnamic acid. These molecules are 

widely distributed in coffee, herbs, and spices. Caffeic acid has been associated with reduced 

glucose absorption and enhanced insulin action [11,12]. Vanillic acid, present in vanilla and 

almonds, has been shown to modulate oxidative stress and inflammation, both of which are 

implicated in diabetes progression [13-15]. Rosmarinic acid, found in rosemary and thyme, 

enhances insulin signaling pathways and provides neuroprotective benefits against diabetes-

associated complications [16,17]. Trans-cinnamic acid, a compound found in cinnamon and 

garlic, has demonstrated glucose-lowering properties by modulating key metabolic pathways 

[18,19]. 

Despite their potential, the effectiveness of polyphenolic compounds in diabetes 

treatment requires further systematic evaluation. Traditional drug discovery approaches rely 

heavily on experimental screening, which is resource-intensive and time-consuming. 

Computational approaches, such as Quantitative Structure-Activity Relationship (QSAR) 

modeling, have emerged as valuable tools in predicting the biological activities of chemical 

compounds based on molecular descriptors [20]. QSAR models establish the relationship 

between molecular properties and biological activity, enabling researchers to identify 

promising drug candidates efficiently [21]. 

Traditional QSAR methods, such as Multiple Linear Regression (MLR) and Partial 

Least Squares (PLS), have been used to establish predictive models. However, these methods 

often struggle with complex datasets and non-linear interactions inherent in biological systems. 

Recent advancements in machine learning (ML) algorithms, including Random Forest (RF) 

and Gradient Boosting (GB), have demonstrated superior predictive power by effectively 

handling non-linearity and multicollinearity in molecular data [22,23]. RF models, in 

particular, have outperformed conventional QSAR techniques in identifying key molecular 

features governing biological activity, while GB algorithms have shown robust accuracy, 

particularly in small datasets [24,25]. 

In parallel, integrated approaches combining in vitro assays with computational 

modeling have gained attention for their ability to elucidate molecular mechanisms and support 

QSAR predictions. For instance, Salau et al. investigated the inhibitory effects of betulinic acid 

on diabetes-related digestive enzymes using both experimental and in silico methods, 

highlighting the synergistic value of dual validation strategies in antidiabetic drug discovery 

[26]. 
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This study investigated the antidiabetic potential of 72 natural polyphenolic compounds 

with reported α-glucosidase inhibitory activities (IC50 values). The dataset included 11 

experimentally obtained compounds and 61 compounds extracted from the literature, 

comprehensively representing structurally diverse molecules. Molecular descriptors were 

generated using ChemAxon's MarvinSketch and PADEL software, yielding over 3000 features, 

which were subsequently reduced to 23 key descriptors based on their relevance and 

interpretability [27]. 

Statistical analysis revealed significant multicollinearity among molecular descriptors, 

necessitating the application of advanced machine-learning models for accurate predictions. 

RF and GB algorithms were implemented, achieving R² values of 0.7751 and 0.8066, 

respectively, underscoring their effectiveness in capturing complex relationships between 

molecular descriptors and IC50 values. Notably, molecular weight (MW) and the number of 

heteroatoms in ring structures (nHeteroRing) emerged as the most influential factors governing 

α-glucosidase inhibition [27,28]. 

Moreover, feature importance analysis provided mechanistic insights into molecular 

interactions with α-glucosidase, revealing that higher molecular weight compounds with 

specific heteroatom configurations exhibited stronger inhibitory effects. This suggests potential 

optimization strategies for the design of more potent antidiabetic agents [29]. 

By integrating QSAR modeling with machine learning techniques, this study 

contributes to the rapid identification and evaluation of naturally derived antidiabetic 

compounds. The findings provide a foundation for further in vitro and in vivo investigations, 

ultimately facilitating the development of more effective diabetes treatments [30]. Such 

computational approaches accelerate drug discovery and enhance our understanding of the 

structure-activity relationships governing bioactive molecules in diabetes therapeutics. 

This study aims to investigate the antidiabetic potential of 72 natural polyphenolic 

compounds by integrating Quantitative Structure-Activity Relationship (QSAR) modeling with 

machine learning algorithms. By correlating molecular descriptors with α-glucosidase 

inhibitory activity (IC50 values), the study seeks to identify key structural features influencing 

bioactivity and to develop predictive models that can guide the discovery of novel, natural 

antidiabetic agents. 

2. Materials and Methods 

2.1. Selection of polyphenolic compounds and acquisition of chemical descriptors for 

quantitative structure-property relationships (QSPR). 

The selected polyphenols are as follows: morin (1), vanillic acid (2), curcumin (3), rutin 

(4), epicatechin (5), coumarin (6), catechin (7), caffeic acid (8), trans-cinnamic acid (9), p-

coumaric acid (10), and rosmarinic acid (11). The standards of these polyphenols (with a purity 

of 96% or higher) were used in the experiments. Additionally, the molecular structures of these 

polyphenols are provided in Figure 1. 

The molecular structures of the selected compounds were drawn using the 

MarvinSketch online tool (ChemAxon) with SMILES (Simplified Molecular Input Line Entry 

Specification) data to represent them in short ASCII sequences and saved as files in .mol 

format. These files were analyzed using open-source software such as PADEL. The PADEL 

software generated more than 2,700 descriptor data for each compound and prepared for use in 

QSAR (Quantitative Structure-Activity Relationship) analyses. These data facilitated the 
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identification of structural features associated with the biological activities of polyphenols and 

enabled the development of related predictive models. 

Figure 1. Structures of selected polyphenols for this study. 

2.2. In vitro α-glucosidase enzyme ınhibition test. 

The α-glucosidase enzyme inhibition test, which has been widely utilized in various 

graduate-level studies conducted at the natural bioactive materials laboratory, was also 

performed in this study following the same established protocols. 

The test began by dissolving the selected polyphenol standards in 2% DMSO. The α-

glucosidase enzyme (1 U/ml) and 5 mM 4-Nitrophenyl-alpha-D-glucopyranoside substrate 

were prepared in 0.1 M phosphate buffer (pH 6.9). Acarbose and the test samples were added 

to a 96-well plate in a volume of 50 µl in triplicate. Subsequently, 10 µl of the enzyme was 

added to each sample and control, followed by the addition of 50 µl of 0.1 M phosphate buffer. 

The plate was incubated in the dark at 37°C, shaking at 30 rpm for 15 minutes. 

After pre-incubation, 20 µl of the substrate was added to each well. The plate was then 

incubated under the same conditions (37°C, 30 rpm, dark) for 10 minutes. The reaction was 

terminated by adding 50 µl of 0.1 M sodium carbonate solution to each well. Absorbance 

measurements were taken at 405 nm using a microplate reader [31-33].  

In this study, molecular descriptors and the concentrations at which the α-glucosidase 

enzyme activity, known to play a role in biochemical processes associated with diabetes, is 

inhibited by 50% (IC50, µg/ml) were compiled for 72 natural compounds. Of these, 11 were 

obtained experimentally, and 61 were compiled from studies in the literature. The reference 

studies from which the IC50 (µg/ml) values used as output data in this study were obtained are 

listed in the References section (these values can also be presented in a table with the 

references). 
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2.3. Obtaining molecular descriptors used as ınput data. 

Initially, the 2D structures of the 72 natural compounds used in the study were 

generated using SMILES codes with the MarvinSketch software by ChemAxon 

(https://marvinjs-demo.chemaxon.com/latest.html). Using the same software, all compounds 

were saved in the .mol file format. 

Subsequently, the .mol file formats were processed using the open-source software 

PADEL (Pharmaceutical Data Exploration Laboratory), which generated over 3000 molecular 

descriptive features [27, 34]. These features include the number of atoms, number of bonds, 

presence of aromatic structures, logP (water solubility) values, characteristic volume, 

molecular weight, and fingerprint values of the molecules. However, since the majority of these 

features are not interpretable data, the total of over 3000 molecular descriptors for each 

compound was narrowed down to 23 selected descriptors. These descriptors are listed in Table 

1. 

Table 1. Descriptors and their definitions. 

No Descriptor Definition 

1 nAcid Number of acidic groups 

2 naAromAtom Number of aromatic atoms 

3 nAtom Number of atoms 

4 nHeavyAtom Number of atoms excluding hydrogen 

5 nC Number of carbon atoms 

6 nN Number of nitrogen atoms 

7 nO Number of oxygen atoms 

8 nBonds Number of bonds 

9 CrippenLogP Crippen logP (water solubility) 

10 CrippenMR Crippen molar refractivity 

11 nHBAcc Number of hydrogen bond acceptors 

12 nHBDon Number of hydrogen bond donors 

13 HybRatio Hybridization ratio 

14 McGowan_Volume Characteristic volume 

15 nRing Number of ring structures 

16 n5Ring Number of 5-membered carbon rings 

17 nHeteroRing Number of rings containing atoms other than carbon 

18 n5HeteroRing Number of 5-membered rings containing atoms other than carbon 

19 nRotB Number of rotatable bonds 

20 RotBFrac Fraction of rotatable bonds 

21 TopoPSA Topological polar surface area 

22 MW Molecular weight 

23 XLogP Computed logP (water solubility) 

2.4. Data processing and machine learning model development with Python. 

The complete dataset used in this study is provided in Table 2. The Python code was 

utilized for data preprocessing, statistical analyses, model training, and validation tests. 

Table 2. Input and output data. 

Name nAcid 
naArom

Atom 

nAto

m 

nHeavy

Atom 
nC nN nO nBonds 

Crippen

LogP 

Crippen

MR 

caffeic acid 1 6 21 13 9 0 4 13 1,25 48,62 

catechin 0 12 35 21 15 0 6 23 1,95 76,68 

coumarin 0 6 17 11 9 0 2 12 1,81 47,12 

Curcumin 0 12 49 27 22 0 5 28 4,12 107,44 

Epicatechin 0 12 35 21 15 0 6 23 1,95 76,68 

Morin 0 12 32 22 15 0 7 24 1,94 79,84 

p-coumaric acid 1 6 20 12 9 0 3 12 1,54 46,96 

Rosmarinic acid 1 12 42 26 18 0 8 27 1,81 91,98 
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Name nAcid 
naArom

Atom 

nAto

m 

nHeavy

Atom 
nC nN nO nBonds 

Crippen

LogP 

Crippen

MR 

Rutin 0 12 73 43 27 0 16 47 -1,59 141,52 

Trans-cinnamic acid 1 6 19 11 9 0 2 11 1,84 45,29 

Vanillic acid 1 6 20 12 8 0 4 12 1,07 44,64 

(-)-4?-O-

Methylepigallocatechin 
0 12 39 23 16 0 7 25 1,95 83,24 

(-)-epigallocatechin 0 18 51 33 22 0 11 36 1,86 111,16 

3-oxolupenal 0 0 78 32 30 0 2 36 7,57 133,01 

Apigenin 7-glucuronide 1 12 50 32 21 0 11 35 0,91 110,76 

Apigenin 0 12 30 20 15 0 5 22 2,71 74,83 

Baicalein 0 12 30 20 15 0 5 22 2,71 74,83 

Baicalin 1 12 50 32 21 0 11 35 1,04 110,40 

Berberine 0 16 43 25 20 1 4 29 4,15 97,52 

Betulinic Acid 1 0 81 33 30 0 3 37 7,25 135,58 

Brachystamide B 0 6 67 30 26 1 3 31 6,84 128,36 

Chrysin-7-O-glucuronide 1 12 49 31 21 0 10 34 1,20 109,09 

Chrysin 0 12 29 19 15 0 4 21 3,00 73,17 

Deoxynojirimycin 0 0 24 11 6 1 4 11 -2,97 36,90 

Epigallocatechin Gallate 0 18 51 33 22 0 11 36 1,86 111,16 

Eriodictyol 0 12 33 21 15 0 6 23 1,84 74,10 

Fisetin tetramethyl ether 0 12 43 25 19 0 6 27 3,59 95,45 

Galangin 0 12 30 20 15 0 5 22 2,89 74,74 

Genistein 5-O-

glucuronide 
1 12 50 32 21 0 11 35 0,54 108,34 

Genistein 0 12 30 20 15 0 5 22 2,71 74,83 

Glycycoumarin 0 12 47 27 21 0 6 29 4,52 106,67 

Guineensine 0 6 61 28 24 1 3 29 6,06 119,13 

Herbacetin 0 12 32 22 15 0 7 24 2,30 78,07 

isolicoflavonol 0 12 44 26 20 0 6 28 4,40 101,69 

isoliquiritigenin 0 12 31 19 15 0 4 20 2,49 73,20 

isoorientin 0 12 52 32 21 0 11 35 0,01 111,13 

isoquercitrin 0 12 53 33 21 0 12 36 -0,44 110,29 

isovitexin 0 12 51 31 21 0 10 34 0,31 109,46 

Kaempferol 0 12 31 21 15 0 6 23 2,59 76,41 

Karanjin 0 15 34 22 18 0 4 25 4,31 85,56 

Katononic acid 1 0 79 33 30 0 3 37 7,60 134,65 

Kotalanol 0 0 50 26 12 0 12 26 -5,70 78,81 

Licochalcone A 0 12 47 25 21 0 4 26 4,55 103,46 

Liquiritigenin 0 12 31 19 15 0 4 21 2,43 70,77 

Liquiritin 0 12 52 30 21 0 9 33 -0,10 103,50 

Lupeol 0 0 81 31 30 0 1 35 7,95 130,38 

Luteolin 0 12 31 21 15 0 6 23 2,41 76,50 

Mangiferin 0 12 48 30 19 0 11 33 -0,09 102,76 

Medicarpin 0 12 34 20 16 0 4 23 3,60 76,67 

Naringenin 0 12 32 20 15 0 5 22 2,14 72,44 

Neoliquiritin 0 12 52 30 21 0 9 33 -0,10 103,50 

Orientin 0 12 52 32 21 0 11 35 -0,36 108,71 

Ovalitenone 0 15 39 25 19 0 6 28 4,09 93,69 

Pellitorine 0 0 41 16 14 1 1 15 3,54 72,97 

Phloretin 0 12 34 20 15 0 5 21 2,29 75,22 

Pinnatin 0 15 34 22 18 0 4 25 4,34 86,16 

Pipataline 0 6 49 21 19 0 2 22 6,28 89,83 

Piperonylic acid 1 6 18 12 8 0 4 13 1,58 44,61 

Polydatin 0 12 50 28 20 0 8 30 0,53 100,10 

Pongachromene 0 12 46 28 22 0 6 32 4,98 107,72 

Pongaglabrone 0 15 33 23 18 0 5 27 4,56 87,80 

Pongamol 0 15 36 22 18 0 4 24 3,87 85,51 

Pongapin 0 15 37 25 19 0 6 29 4,54 93,75 

Procyanidin A2 0 24 66 42 30 0 12 48 3,76 148,39 

Prunetin-5-O-beta-D-

glucuronide 
0 12 52 33 22 0 11 36 -0,49 110,59 

Prunetin 0 12 33 21 16 0 5 23 3,01 79,72 

Salacinol 0 0 38 20 9 0 9 20 -3,79 60,79 

Scandenin A 0 12 61 33 27 0 6 36 6,43 132,12 

Scandenone 0 12 54 30 25 0 5 33 5,44 118,71 

Scutellarin 1 12 51 33 21 0 12 36 0,74 112,06 

Ursolic acid 1 0 81 33 30 0 3 37 7,25 135,58 
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Name nAcid 
naArom

Atom 

nAto

m 

nHeavy

Atom 
nC nN nO nBonds 

Crippen

LogP 

Crippen

MR 

Vitexin 0 12 51 31 21 0 10 34 -0,07 107,04 

Table 2. input and output data(horizontally continued). 
nHB

Acc 

nHB

Don 
HybRatio 

McG 

Volume 

nRi

ng 

n5Ri

ng 

nHetRi

ng 

n5HetRi

ng 

nRo

tB 

RotBF

rac 

TopoPS

A 
MW XLogP 

IC50 

(ug/ml) 

2 3 0,00 1,29 1 0 0 0 2 0,15 77,76 180,04 1,14 319,69 

1 5 0,20 1,99 3 0 1 0 1 0,04 110,38 290,08 0,41 37,80 

1 0 0,00 1,06 2 0 1 0 0 0,00 17,07 146,04 3,23 1175,37 

2 1 0,18 2,85 2 0 0 0 8 0,29 72,83 366,15 4,13 1352,28 

1 5 0,20 1,99 3 0 1 0 1 0,04 110,38 290,08 0,41 270,32 

2 5 0,00 1,96 3 0 1 0 1 0,04 118,22 302,04 0,65 23,85 

2 2 0,00 1,23 1 0 0 0 2 0,17 57,53 164,05 1,89 888,67 

4 5 0,11 2,51 2 0 0 0 7 0,26 144,52 360,08 2,08 211,49 

11 10 0,44 3,97 5 0 3 0 6 0,13 265,52 610,15 -1,19 365,17 

2 1 0,00 1,17 1 0 0 0 2 0,18 37,30 148,05 3,90 1428,13 

2 2 0,13 1,19 1 0 0 0 2 0,17 66,76 168,04 0,63 582,56 

1 5 0,25 2,19 3 0 1 0 2 0,08 119,61 320,09 -0,47 300,00 

2 8 0,14 2,99 4 0 1 0 4 0,11 197,37 458,08 0,69 130,00 

2 0 0,87 3,78 5 1 0 0 2 0,06 34,14 438,35 9,92 62,30 

7 6 0,24 2,89 4 0 2 0 4 0,11 183,21 446,08 0,62 543,28 

1 3 0,00 1,85 3 0 1 0 1 0,05 86,99 270,05 1,57 231,13 

1 3 0,00 1,85 3 0 1 0 1 0,05 86,99 270,05 3,06 277,94 

7 6 0,24 2,89 4 0 2 0 4 0,11 183,21 446,08 1,68 591,58 

0 0 0,25 2,40 5 1 3 1 2 0,07 40,80 336,12 2,90 198,40 

3 2 0,90 3,88 5 1 0 0 2 0,05 57,53 456,36 9,41 0,27 

2 1 0,50 3,53 2 1 1 1 15 0,48 47,56 411,28 8,41 34,09 

7 5 0,24 2,83 4 0 2 0 4 0,12 162,98 430,09 2,21 612,13 

1 2 0,00 1,79 3 0 1 0 1 0,05 66,76 254,06 3,16 422,67 

5 5 1,00 1,18 1 0 1 0 1 0,09 92,95 163,08 -0,93 12,23 

2 8 0,14 2,99 4 0 1 0 4 0,11 197,37 458,08 0,69 25,00 

1 4 0,13 1,95 3 0 1 0 1 0,04 107,22 288,06 0,36 100,00 

2 0 0,21 2,47 3 0 1 0 5 0,19 63,22 342,11 3,36 19,70 

2 3 0,00 1,85 3 0 1 0 1 0,05 86,99 270,05 3,51 63,86 

7 6 0,24 2,89 4 0 2 0 4 0,11 183,21 446,08 0,56 43,24 

1 3 0,00 1,85 3 0 1 0 1 0,05 86,99 270,05 1,51 1,47 

1 3 0,19 2,71 3 0 1 0 4 0,14 96,22 368,13 2,93 19,52 

2 1 0,46 3,25 2 1 1 1 13 0,45 47,56 383,25 7,27 19,26 

2 5 0,00 1,96 3 0 1 0 1 0,04 127,45 302,04 1,38 407,40 

2 4 0,15 2,57 3 0 1 0 3 0,11 107,22 354,11 3,38 10,84 

1 3 0,00 1,90 2 0 0 0 3 0,15 77,76 256,07 2,76 960,00 

6 8 0,29 2,93 4 0 2 0 3 0,09 197,37 448,10 -1,04 43,89 

7 8 0,29 2,99 4 0 2 0 4 0,11 206,60 464,10 -0,35 100,00 

6 7 0,29 2,88 4 0 2 0 3 0,09 177,14 432,11 -0,51 6,70 

2 4 0,00 1,90 3 0 1 0 1 0,04 107,22 286,05 1,91 52,95 

2 0 0,06 2,06 4 1 2 1 2 0,08 48,67 292,07 4,97 27,80 

3 1 0,87 3,84 5 0 0 0 1 0,03 54,37 454,34 8,44 88,60 

12 8 1,00 2,72 1 1 1 1 10 0,38 236,65 424,07 -5,51 0,58 

1 2 0,19 2,70 2 0 0 0 6 0,23 66,76 338,15 4,44 26,45 

1 2 0,13 1,83 3 0 1 0 1 0,05 66,76 256,07 1,86 3,36 

6 5 0,38 2,86 4 0 2 0 4 0,12 145,91 418,13 0,75 30,26 

1 1 0,93 3,81 5 1 0 0 1 0,03 20,23 426,39 11,90 10,60 

1 4 0,00 1,90 3 0 1 0 1 0,04 107,22 286,05 1,03 41,22 

6 8 0,32 2,70 4 0 2 0 2 0,06 197,37 422,08 -2,00 87,00 

0 1 0,25 1,91 4 1 2 1 1 0,04 47,92 270,09 2,31 44,38 

1 3 0,13 1,89 3 0 1 0 1 0,05 86,99 272,07 0,90 214,00 

6 5 0,38 2,86 4 0 2 0 4 0,12 145,91 418,13 0,75 31,30 

6 8 0,29 2,93 4 0 2 0 3 0,09 197,37 448,10 -1,04 52,00 

2 0 0,16 2,32 4 2 2 2 5 0,18 74,97 338,08 2,69 29,70 

2 1 0,64 2,11 0 0 0 0 9 0,60 29,10 223,19 4,47 34,39 

1 4 0,13 2,00 2 0 0 0 4 0,19 97,99 274,08 1,98 31,26 

1 0 0,06 2,06 4 1 2 1 2 0,08 48,67 292,07 4,28 36,50 

0 0 0,58 2,51 2 1 1 1 10 0,45 18,46 288,21 8,27 32,10 

2 1 0,13 1,08 2 1 1 1 1 0,08 55,76 166,03 1,07 18,40 

5 6 0,30 2,77 3 0 1 0 5 0,17 139,84 390,13 2,33 108,93 

2 0 0,23 2,63 5 1 3 1 2 0,06 63,22 378,11 4,17 22,80 
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nHB

Acc 

nHB

Don 
HybRatio 

McG 

Volume 

nRi

ng 

n5Ri

ng 

nHetRi

ng 

n5HetRi

ng 

nRo

tB 

RotBF

rac 

TopoPS

A 
MW XLogP 

IC50 

(ug/ml) 

1 0 0,06 2,01 5 2 3 2 1 0,04 57,90 306,05 3,13 8,60 

2 0 0,11 2,17 3 1 1 1 5 0,21 56,51 294,09 4,28 58,20 

2 0 0,11 2,21 5 2 3 2 2 0,07 67,13 336,06 3,37 21,40 

2 9 0,20 3,76 7 0 3 0 2 0,04 209,76 576,13 0,61 0,27 

7 4 0,27 3,01 4 0 2 0 5 0,14 175,04 459,09 0,17 56,05 

1 2 0,06 1,99 3 0 1 0 2 0,09 75,99 284,07 2,03 31,87 

9 5 1,00 2,12 1 1 1 1 7 0,35 175,96 334,04 -3,49 0,84 

2 1 0,30 3,40 4 0 2 0 5 0,14 74,22 448,19 5,39 25,17 

1 2 0,24 3,06 4 0 2 0 3 0,09 75,99 404,16 4,38 34,74 

7 7 0,24 2,95 4 0 2 0 4 0,11 203,44 462,08 0,08 313,25 

3 2 0,90 3,88 5 0 0 0 1 0,03 57,53 456,36 8,95 188,30 

6 7 0,29 2,88 4 0 2 0 3 0,09 177,14 432,11 -0,51 4,10 

 

Below is the Python code used for data preprocessing, correlation analysis, and training 

of non-linear machine learning models, specifically Random Forest and Gradient Boosting. 

Libraries 

import pandas as pd 

import numpy as np 

import seaborn as sns 

import matplotlib.pyplot as plt 

import os 

Data Loading, Preprocessing, and Feature Definition 

dataset = pd.read_excel(r'C:\Users\All_inputoutput_bahar.xlsx') 

print(dataset.head()) 

print(dataset.columns) 

print(dataset.shape) 

print(dataset.describe().T) 

dataset_modified = dataset.copy() 

columns_to_drop = ['Name', 'IC50 (ug/ml)'] 

X = dataset_modified.drop(columns=columns_to_drop) 

y = dataset_modified["IC50 (ug/ml)"] 

# Correlation Matrix 

correlation_matrix = X.corr() 

# Sort correlations with IC50 

correlation_with_target = correlation_matrix['IC50 

(ug/ml)'].sort_values(ascending=False) 

# Bar plot of correlations 

plt.figure(figsize=(6, 4)) 

correlation_with_target.plot(kind='bar') 

plt.title('Correlations with IC50') 

plt.xlabel('Variables') 

plt.ylabel('Correlation Coefficient') 

plt.show() 

# Heatmap of the correlation matrix 

plt.figure(figsize=(8, 8)) 

sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt='.2f') 

plt.title('Correlation Matrix') 

plt.show() 
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Training Non-Linear Models 

from sklearn.model_selection import train_test_split 

from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor 

from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score 

# Train-test split 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.15, 

random_state=83) 

# Random Forest 

rf_model = RandomForestRegressor().fit(X_train, y_train) 

y_pred_rf = rf_model.predict(X_test) 

print("R2 Score (Random Forest):", r2_score(y_test, y_pred_rf)) 

# Scatter plot for Random Forest 

plt.scatter(y_test, y_pred_rf, color="black") 

plt.xlabel('Test Values') 

plt.ylabel('Predictions') 

plt.show() 

# Gradient Boosting 

gb_model = GradientBoostingRegressor().fit(X_train, y_train) 

y_pred_gb = gb_model.predict(X_test) 

print("R2 Score (Gradient Boosting):", r2_score(y_test, y_pred_gb)) 

print("MSE (Gradient Boosting):", mean_squared_error(y_test, y_pred_gb)) 

# Scatter plot for Gradient Boosting 

plt.scatter(y_test, y_pred_gb, color="black") 

plt.xlabel('Test Values') 

plt.ylabel('Predictions') 

plt.show() 

Determining Feature Importance 

# Feature importances for Random Forest 

feature_importances_rf = rf_model.feature_importances_ 

print("Feature Importances (Random Forest):", feature_importances_rf) 

# Feature importances for Gradient Boosting 

feature_importances_gb = gb_model.feature_importances_ 

print("Feature Importances (Gradient Boosting):", feature_importances_gb) 

# Bar plot for feature importance 

plt.figure(figsize=(16, 6)) 

plt.bar(X.columns, feature_importances_rf) 

plt.xlabel('Variables') 

plt.ylabel('Importance Score') 

plt.title('Feature Importance (Random Forest)') 

plt.xticks(rotation=45, ha='right') 

plt.show() 

plt.figure(figsize=(16, 6)) 

plt.bar(X.columns, feature_importances_gb) 

plt.xlabel('Variables') 

plt.ylabel('Importance Score') 

plt.title('Feature Importance (Gradient Boosting)') 
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plt.xticks(rotation=45, ha='right') 

plt.show() 

Visualizing Relationships with IC50 

sns.jointplot(x="MW", y="IC50 (µg/ml)", data=dataset, kind="reg") 

sns.jointplot(x="nHeteroRing", y="IC50 (µg/ml)", data=dataset, kind="reg") 

plt.show() 

This code provides a complete framework for analyzing the dataset, building machine 

learning models, and visualizing key insights. 

3. Results and Discussion 

3.1. In vitro α-glucosidase enzyme ınhibition test. 

This study performed α-glucosidase enzyme inhibition tests according to standard 

methods reported in the literature [31-33]. The experiments were repeated using a method 

previously employed and successfully validated in postgraduate projects in our laboratory. 

For each polyphenol standard, inhibition activity was measured at various 

concentrations, and the results were calculated as percentage inhibition values. Based on these 

data, inhibition activity graphs were plotted against concentrations, and IC50 values were 

determined. IC50 is defined as the concentration of a compound required to inhibit 50% of 

enzyme activity, and it is a critical parameter for evaluating the effectiveness of inhibitors. 

The IC50 values of the tested polyphenol standards are presented in Table 3. The results 

indicate that compounds such as Morin and Catechin exhibit high inhibition activity on the α-

glucosidase enzyme, suggesting their potential as antidiabetic agents. 

Table 3. IC50 Values of standard natural compounds for α-glucosidase enzyme inhibition. 

Natural compounds IC50 (µg/ml) Graphics 

1. Caffeic acid 319.69 

 

2. Morin 23.85 
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Natural compounds IC50 (µg/ml) Graphics 

3. Vanillic acid 582.56 

 

4. Epicatechin 270.32 

 

5. Catechin 37.80 

 

6. p-coumaric acid 888.67 

 

7. Rosmarinic acid 211.49 
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Natural compounds IC50 (µg/ml) Graphics 

8. Curcumin 1352.38 

 

9. Rutin 365.17 

 

10. Coumarin 1175.37 

 

11. Trans Resveratrol 1428.13 

 

The data in Table 4 demonstrate the ranking of inhibitor effectiveness and aligns with 

information reported in the literature. Additionally, the method was proven reliable in terms of 

sensitivity and reproducibility. 

Table 4. Effectiveness levels of standard compounds based on IC50 values. 

Compound IC50 (µg/ml) Effectiveness category 

Morin 23.85 High effectiveness 

Catechin 37.80 High effectiveness 

Rosmarinic acid 211.49 Moderate effectiveness 

Epicatechin 270.32 Moderate effectiveness 

Caffeic acid 319.69 Moderate effectiveness 

Rutin 365.17 Moderate effectiveness 

Vanillic acid 582.56 Moderate effectiveness 

p-Coumaric acid 888.67 Low effectiveness 

Coumarin 1175.37 Low effectiveness 

Curcumin 1352.38 Low effectiveness 

Trans-Resveratrol 1428.13 Low effectiveness 
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The effectiveness of the evaluated compounds was determined based on their IC50 

values, categorized into three levels: High Effectiveness (IC50 < 50 µg/ml), Moderate 

Effectiveness (50 µg/ml ≤ IC50 < 600 µg/ml), and Low Effectiveness (IC50 ≥ 600 µg/ml). These 

categories, along with the corresponding IC50 values, were visualized to provide insights into 

the relative inhibitory potential of each compound (Figure 2). 

In the high effectiveness category, morin (23.85 µg/ml) and catechin (37.80 µg/ml) 

exhibited exceptionally strong inhibitory activity, with IC50 values well below the 50 µg/ml 

threshold. These compounds demonstrate significant bioactivity and are promising candidates 

for further exploration in applications requiring potent inhibitors. Their low IC50 values suggest 

a high binding affinity to the target, making them valuable for biotechnological and 

pharmaceutical developments. 

The moderate effectiveness category included compounds such as rosmarinic acid 

(211.49 µg/ml), epicatechin (270.32 µg/ml), caffeic acid (319.69 µg/ml), rutin (365.17 µg/ml), 

and Vanillic acid (582.56 µg/ml). Although their IC50 values are higher than those in the high-

effectiveness group, these compounds still display noteworthy inhibitory activity. They may 

be suitable for applications requiring moderate bioactivity or could be combined with other 

active agents to achieve synergistic effects. The relatively wider IC50 range within this category 

highlights their versatility and potential for optimization. 

In the low effectiveness category, compounds with IC50 values exceeding 600 µg/ml 

included p-coumaric acid (888.67 µg/ml), coumarin (1175.37 µg/ml), curcumin (1352.38 

µg/ml), and Trans-Resveratrol (1428.13 µg/ml). These compounds exhibit weaker inhibitory 

activity, indicating limited effectiveness under the tested conditions. However, this does not 

entirely preclude their potential utility; structural modifications, chemical derivatization, or co-

application with more potent compounds might enhance their bioactivity. Among these, trans-

resveratrol, with the highest IC50 value (1428.13 µg/ml), appears least effective, suggesting 

that alternative strategies would be required to improve its applicability. 

 
Figure 2. IC50 values of the compounds for α-glucosidase enzyme inhibition. 

Highly effective compounds like morin and catechin stand out as robust inhibitors, 

offering a strong basis for further pharmacological or industrial applications. 
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Moderate-effectiveness compounds serve as viable secondary options, particularly 

when high-affinity inhibitors are not strictly necessary or when cost and availability become 

critical considerations. 

Low-effectiveness compounds may require substantial modifications or alternative 

approaches to unlock their full potential. However, their inherent limitations suggest they are 

less favorable for direct applications than the other groups. 

The study underscores the importance of IC50 values in guiding compound selection for 

specific applications. While compounds with lower IC50 values, such as morin and catechin, 

are ideal for high-demand settings, moderate and low-effectiveness compounds can be 

explored in less stringent or multi-component systems. These results provide a framework for 

prioritizing compounds for further optimization, supporting the development of targeted 

bioactive agents, and efficiently using available resources. 

In this study, the inhibition activities of the tested polyphenols on α-glucosidase enzyme 

were determined through their IC50 values and compared with literature data. The results were 

generally consistent with the reported values in the literature. For example, the IC50 value for 

morin was determined to be 23.85 µg/ml, which aligns with the literature-reported range of 20-

30 µg/ml [35]. Similarly, the IC50 value for catechin was found to be 37.80 µg/ml, matching 

the 35-50 µg/ml range reported in previous studies [36]. These findings reaffirm the high 

effectiveness of Morin and Catechin as α-glucosidase inhibitors. 

The IC50 value for quercetin was measured as 249.75 µg/ml, which corresponds to the 

reported range of 200-300 µg/ml in the literature [37]. This indicates that quercetin exhibits 

moderate effectiveness as an inhibitor. In contrast, chlorogenic acid and naringin displayed low 

effectiveness with IC50 values of 6868.74 µg/ml and 12850 µg/ml, respectively. Comparisons 

with literature data, which report ranges of 3000-7000 µg/ml for chlorogenic acid [38] and 

10,000-15,000 µg/ml for naringin [39], confirm the limited inhibition potential of these 

compounds. 

Curcumin's IC50 value was determined to be 1352.38 µg/ml, aligning with the literature 

range of 1000-1500 µg/ml [40]. This result indicates that curcumin has a low inhibition 

capacity. 

To better understand the results and their predictive power, regression models were 

employed to analyze the relationship between molecular descriptors and IC50 values. The 

variables found to be statistically significant included molecular weight (MW) and the number 

of heteroatoms in ring structures (nHeteroRing), both of which played critical roles in model 

predictions. Although the dataset primarily contained IC50 values between 0-250 µg/ml, values 

exceeding 500 µg/ml introduced outlier effects that slightly limited the R² values of the 

regression models. Despite this limitation, nonlinear algorithms successfully generated 

reasonable and practical predictive models, demonstrating their potential for future studies with 

larger, more balanced datasets. 

Overall, the results are largely consistent with the literature-reported IC50 values, 

supporting the reliability of the experimental methodology and the accuracy of the data 

obtained. The findings for highly effective inhibitors, such as Morin and Catechin, particularly 

agree with previously reported values. However, some discrepancies with literature values 

could arise due to variations in testing conditions (e.g., enzyme concentration, buffer pH, and 

substrate type) or differences in the purity and solubility of the compounds used. 

3.2. Regression enriched with literature data. 
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In this study, experimental data for 11 natural compounds — including morin (1), 

vanillic acid (2), curcumin (3), rutin (4), epicatechin (5), coumarin (6), catechin (7), caffeic 

acid (8), trans-cinnamic acid (9), p-coumaric acid (10), and rosmarinic acid (11) and literature-

derived data for an additional 61 natural compounds, amounting to 72 compounds, were 

collected. Molecular descriptors and the concentrations required to inhibit 50% of the α-

glucosidase enzyme activity (IC50, µg/ml), a key biochemical process associated with diabetes, 

were compiled. 

The IC50 (µg/ml) values used as output data in the study were obtained from reference 

studies, which are cited in the bibliography and listed in Table 5. These values are critical for 

understanding the inhibitory potential of the selected natural compounds and for constructing 

predictive regression models. 

Table 5. IC50 (µg/ml) values of natural compounds for α-glucosidase enzyme inhibition reported in the 

literature. 

Compound (No and Name) IC50 (µg/ml) Reference 

1. (-)-4′-O-Methylepigallocatechin 300.00 [41] 

2. (-)-Epigallocatechin 130.00 [41] 

3. 3-Oxolupenal 62.30 [42] 

4. Apigenin 7-Glucuronide 543.28 [43] 

5. Apigenin 231.13 [43] 

6. Baicalein 277.94 [43] 

7. Baicalin 591.58 [43] 

8. Berberine 198.40 [44] 

9. Betulinic Acid 0.27 [26] 

10. Brachystamide B 34.09 [41] 

11. Chrysin-7-O-Glucuronide 612.13 [43] 

12. Chrysin 422.67 [43] 

13. Deoxynojirimycin 12.23 [41] 

14. Epigallocatechin Gallate 25.00 [42,45] 

15. Eriodictyol 100.00 [46] 

16. Fisetin Tetramethyl Ether 19.70 [41] 

17. Galangin 63.86 [46,47] 

18. Genistein 5-O-Glucuronide 43.24 [41] 

19. Genistein 1.47 [41] 

20. Glycycoumarin 19.52 [48] 

21. Guineensine 19.26 [41] 

22. Herbacetin 407.40 [49] 

23. Isolicoflavonol 10.84 [50] 

24. Isoliquiritigenin 960.00 [51] 

25. Isoorientin 43.89 [41,46] 

26. Isoquercitrin 100.00 [41] 

27. Isovitexin 6.70 [41] 

28. Kaempferol 52.95 [47] 

29. Karanjin 27.80 [41] 

30. Katononic Acid 88.60 [52] 

31. Kotalanol 0.58 [41] 

32. Licochalcone A 26.45 [48] 

33. Liquiritigenin 3.36 [46] 

34. Liquiritin 30.26 [46] 

35. Lupeol 10.60 [53] 

36. Luteolin 41.22 [41] 

37. Mangiferin 87.00 [41] 

38. Medicarpin 44.38 [31] 

39. Naringenin 214.00 [46,54] 

40. Neoliquiritin 31.30 [46] 

41. Orientin 52.00 [41,55] 

42. Ovalitenone 29.70 [41] 

43. Pellitorine 34.39 [41] 

44. Phloretin 31.26 [41] 

45. Pinnatin 36.50 [41] 

46. Pipataline 32.10 [41] 

47. Piperonylic Acid 18.40 [41] 
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Compound (No and Name) IC50 (µg/ml) Reference 

48. Polydatin 108.93 [47] 

49. Pongachromene 22.80 [41] 

50. Pongaglabrone 8.60 [41] 

51. Pongamol 58.20 [41] 

52. Pongapin 21.40 [41] 

53. Procyanidin A2 0.27 [42] 

54. Prunetin-5-O-beta-D-Glucuronide 56.05 [46] 

55. Prunetin 31.87 [46] 

56. Salacinol 0.84 [41] 

57. Scandenin A 25.17 [41] 

58. Scandenone 34.74 [41] 

59. Scutellarin 313.25 [42] 

60. Ursolic Acid 188.30 [53] 

61. Vitexin 4.10 [56] 

The data obtained from the literature and the PADEL program were first statistically 

analyzed using the Python code. The findings are presented in Table 7, which includes the total 

count, mean, minimum, and maximum values, standard deviation, and maximum values at 

specific percentiles (25%, 50%, and 75%) for each variable in the dataset. The dataset consists 

of a matrix with 72 rows and 24 columns (Table 1). As shown in Table 6, the standard deviation 

of some input variables is notably high, indicating that the distribution of data for these 

compounds spans a very wide range. 

Subsequently, a correlation model was run using Python code to examine the pairwise 

linear relationships between the independent variables (input features) and the dependent 

variable (IC50 values). Correlation coefficients were calculated for each variable, and the results 

are displayed as a bar graph in Figure 3. According to the graph, the increasing values of the 

first three variables (nAcid, RotBFrac, and XlogP) have a positive effect on increasing IC50 

values, while the remaining variables have a decreasing effect on IC50 values. 

Table 6. Descriptive statistics of the data. 

 count mean std min 25% 50% 75% max 

nAcid 72.0 0.194444 0.398550 0.000000 0.000000 0.000000 0.000000 1.000000 

naAromAtom 
72.0 10.388889 4.920654 0.000000 10.500000 12.000000 12.00000

0 

24.00000

0 

nAtom 
72.0 43.750000 15.619372 17.000000 32.000000 43.000000 51.00000

0 

81.00000

0 

nHeavyAtom 
72.0 25.097222 7.103183 11.000000 20.000000 25.000000 31.00000

0 

43.00000

0 

nC 
72.0 18.597222 5.727767 6.000000 15.000000 19.000000 21.00000

0 

30.00000

0 

nN 72.0 0.69444 0.255992 0.000000 0.000000 0.000000 0.000000 1.000000 

nO 
72.0 6.375000 3.303594 1.000000 4.000000 6.000000 9.000000 16.00000

0 

nBonds 
72.0 27.361111 8.114160 11.000000 22.000000 27.000000 34.25000

0 

48.00000

0 

CrippenLogP 72.0 2.542478 2.623458 -5.703900 1.059983 2.354520 4.187102 7.950990 

CrippenMR 
72.0 93.061028 25.655631 36.896900 75.120750 93.719750 110.3201

25 

148.3868

00 

nHBAcc 
72.0 3.013889 2.656340 0.000000 1.000000 2.000000 5.000000 12.00000

0 

nHBDon 
72.0 3.486111 2.742432 0.000000 1.000000 3.000000 5.000000 10.00000

0 

HybRatio 72.0 0.266225 0.276617 0.000000 0.094572 0.200000 0.288360 1.000000 

McGowan_Volume 72.0 2.461925 0.736056 1.061900 1.936975 2.489150 2.902550 3.965100 

nRing 72.0 3.263889 1.299979 0.000000 2.750000 3.000000 4.000000 7.000000 

n5Ring 72.0 0.291667 0.542231 0.000000 0.000000 0.000000 0.250000 2.000000 

nHeteroRing 72.0 1.236111 0.880030 0.000000 1.000000 1.000000 2.000000 3.000000 

n5HeteroRing 72.0 0.250000 0.524069 0.000000 0.000000 0.000000 0.000000 2.000000 

nRotB 
72.0 3.347222 2.878574 0.000000 1.000000 2.000000 4.000000 15.00000

0 
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 count mean std min 25% 50% 75% max 

RotBFrac 72.0 0.127437 0.116774 0.000000 0.045455 0.089572 0.150962 0.600000 

TopoPSA 
72.0 106.453611 60.384058 17.070000 57.807500 86.990000 150.1775

00 

265.5200

00 

MW 
72.0 346.681646 100.241819 146.036779 281.572386 338.115424 432.1056

47 

610.1533

85 

XLogP 
72.0 2.413069 3.091732 -5.508000 0.613250 1.946500 3.609250 11.90100

0 

IC50(ug/ml) 
72.0 189.716667 313.459233 0.270000 23.587500 43.565000 218.2825

00 

1428.130

000 

 
Figure 3. Correlations between variables and the dependent variable (IC50). 

However, when examining the correlation matrix (Figure 4), which is used to identify 

the pairwise relationships between the variables and IC50, it was observed that while most 

variables have linear, pairwise, and strong correlations with each other, nAcid is the only 

variable that shows a relatively stronger correlation with the IC50 value. 

Based on these results, it is observed that the dataset exhibits a high degree of 

multicollinearity. Therefore, selecting non-linear models for training and fitting the data is 

deemed more appropriate. 

Among non-linear regression models commonly used in machine learning problems, 

Random Forest and Gradient Boosting are widely preferred. Many studies have demonstrated 

that the gradient-boosting model is more suitable for datasets with weak learning capabilities. 

For this reason, the dataset used in this study was trained and tested for compatibility using 

non-linear models, namely Random Forest and Gradient Boosting algorithms. 

Using the Python code, the key parameters for both models—test_size (the ratio of test 

data to the total dataset) and random_state (random seed: the parameter used to split the data 

into training and testing sets)—were set to 0.15 (15%) and 83, respectively. Subsequently, the 

dataset was trained and analyzed under these model parameters. The analysis yielded R² values 

of 0.7751 for the Random Forest model and 0.8066 for the Gradient Boosting model. Under 

these conditions, the IC50 values for 11 points (15% of the data) designated as the test dataset 

were predicted by the models and compared against actual values, as shown in Figure 5. 
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Figure 4. Correlation matrix between variables and the dependent variable (IC50). 

 
Figure 5. Predicted IC50 values by random forest and gradient boosting models were compared with the test 

dataset IC50 values. 

The study also aimed to clarify which variables were statistically more significant in 

training the models whose compatibility and predictive capabilities were tested. Accordingly, 

the feature importance scores, which indicate the degree of importance of each variable for 

both models, were determined and are presented comparatively in Figure 6. 
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Figure 6. Feature ımportance scores for random forest and gradient boosting models. 

Among the variables used, both models commonly identified molecular weight (MW) 

and the number of heteroatoms in ring structures (nHeteroRing) as significant, differing from 

the linear relationships observed in the correlation matrix (Figure 4). To visualize how these 

two variables vary with IC50 in the dataset, Seaborn graphs, a popular Python library for data 

visualization, were generated and are presented in Figure 7. 

  
(a) (b) 

Figure 7. Relationship between (a) IC50; (b) most significant variables ıdentified by random forest and 

gradient boosting models. 
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From Figure 6, it can be observed that the target values (IC50) used in this study are 

primarily concentrated in the range of 0–250 µg/ml, while values exceeding 500 µg/ml create 

a distorting effect on the models. Additionally, the variables identified as the most statistically 

significant by the models, MW (molecular weight) and nHeteroRing (number of heteroatoms 

in ring structures), are also spread across a wide range. These factors explain the R² values not 

reaching the desired levels in the regression results. However, the results still demonstrate that 

with such a small sample size, a dataset containing widely scattered data and significant 

multicollinearity can yield reasonable predictive models when employing non-linear 

algorithms. 

This study provides comprehensive insights into the α-glucosidase inhibitory activity 

of 72 natural compounds by leveraging statistical analyses and machine learning (ML) 

techniques. The findings highlight several key aspects of the dataset and model performance, 

which are discussed in a structured manner below. 

The dataset comprised 72 compounds characterized by 23 molecular descriptors, as 

summarized in Table 1. The wide distribution of variables, such as nAcid, RotBFrac, and 

XLogP, with significant standard deviations, reflects the structural diversity of the compounds. 

For instance, the molecular weight (MW) ranged from 146.04 to 610.15 g/mol, emphasizing 

the heterogeneity of the dataset. Similarly, the IC50 values spanned a broad range, with some 

compounds showing high inhibition (IC50 < 50 µg/ml) while others exceeded 1000 µg/ml. This 

large variance in biological activity likely influenced the predictive accuracy of the ML models. 

Correlation analysis revealed interesting relationships between the molecular 

descriptors and IC50 values. Variables such as nAcid, RotBFrac, and XLogP exhibited positive 

correlations with IC50, suggesting that higher acidity, rotatable bond fractions, and lipophilicity 

might reduce inhibitory potency. In contrast, descriptors like nO (number of oxygen atoms) 

and MW showed negative correlations, indicating their potential importance in enhancing 

inhibitory activity. The correlation matrix, however, revealed multicollinearity among many 

variables, with strong linear relationships observed between MW, nC, and nHeavyAtom. While 

these interdependencies are valuable for feature selection, they necessitate the use of non-linear 

ML models to account for complex relationships. 

The study employed Random Forest (RF) and Gradient Boosting (GB) models to 

predict IC50 values, achieving R² scores of 0.7751 and 0.8066, respectively. Both models 

effectively captured non-linear interactions, but GB slightly outperformed RF due to its 

iterative learning approach, which optimizes weak learners. When compared to previous 

studies on similar datasets, which reported R² scores in the range of 0.70–0.80, the performance 

of the models in this study aligns well with established benchmarks. 

Feature importance analysis provided additional insights into the key molecular 

descriptors contributing to the model’s predictions. MW and nHeteroRing (number of 

heteroatoms in ring structures) were consistently identified as the most significant features 

influencing IC50. Other notable features included TopoPSA (topological polar surface area), 

suggesting that molecular polarity plays a critical role in inhibitory activity. These results 

underline the importance of specific molecular characteristics in determining the bioactivity of 

natural compounds. Moreover, the findings provide actionable insights for compound design, 

such as prioritizing heteroatom-rich ring structures and optimizing molecular weight to balance 

solubility and bioavailability. 

The relationship between IC50 and the two most significant variables, MW and 

nHeteroRing, was further explored through scatter plots. Compounds with MW in the range of 
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250–400 g/mol exhibited the highest inhibitory activity, suggesting an optimal MW range for 

α-glucosidase inhibitors. Similarly, a higher number of heteroatoms in ring structures 

correlated with lower IC50 values, reinforcing the importance of chemical diversity in achieving 

potent bioactivity. 

This study has several strengths, including integrating machine learning techniques to 

address multicollinearity and using a diverse dataset to enhance model robustness. However, 

the limited dataset size and the presence of outliers with IC50 > 500 µg/ml introduced 

challenges, such as noise and potential distortion in model predictions. Future studies could 

address these limitations by expanding the dataset and using log-transformed IC50 values to 

reduce skewness. 

4. Conclusions 

This study contributes significantly to understanding α-glucosidase enzyme inhibition 

by integrating QSAR analysis with machine learning-based predictive modeling. The findings 

highlight the strong inhibitory potential of morin and catechin, underscoring their viability as 

promising antidiabetic candidates. Furthermore, applying Random Forest (RF) and Gradient 

Boosting (GB) models successfully captured the complex relationships between molecular 

descriptors and IC50 values, achieving R² values of 0.7751 and 0.8066, respectively. These 

results emphasize the effectiveness of non-linear regression approaches in addressing 

descriptor multicollinearity and improving predictive accuracy. 

Feature importance analysis further revealed that molecular weight (MW) and the 

number of heteroatoms in ring structures (nHeteroRing) play crucial roles in α-glucosidase 

inhibition. The correlation between these structural attributes and inhibitory potency suggests 

valuable optimization strategies for drug design. Additionally, this study demonstrates the 

power of computational methodologies in reducing the dependence on experimental screening, 

thereby streamlining the identification of bioactive compounds. 

Future research should aim to refine predictive models by incorporating 

pharmacokinetic properties and expanding datasets to enhance generalizability. By leveraging 

AI-driven strategies, subsequent studies can further advance the field of antidiabetic drug 

discovery, accelerating the development of novel therapeutic agents from natural sources. 
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