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Abstract: The kinetics and mechanism of dimenhydrinate (DMH) oxidation by potassium hydrogen 

peroxomonosulfate (KHSO₅) in aqueous medium were investigated iodometrically at 20°C. The 

reaction was found to have a stoichiometry of 1:1. The reaction is first order in KHSO5 and 

diphenhydramine (DPH) concentrations. An increase in the pH from 7.7 to 10.4 causes an increase in 

the reaction rate. It is shown that the kinetics of the reaction are subject to the mechanism of acid-base 

catalysis—the proposed reaction kinetic equation. The oxidation product of DPH is DPH N-oxide 

(pDPH). Two analytical methods were developed using KHSO₅ as a reagent: a titrimetric method 

involving N-oxidation with iodometric back titration (method A) and a spectrophotometric method 

based on the formation of a triiodide chromogen with maximum absorption at 350 nm (method B). 

Method A was effective for concentrations of 0.5–5.0 mg in 10 mL, while Method B obeyed Beer’s law 

over 0.1–4.1 μg/mL, with a molar absorptivity of 24.4×10³ L/mol cm. The limits of quantification were 

0.05 mg/mL (method A) and 0.11 μg/mL (method B). Both methods were unaffected by common 

excipients and showed reliability in analyzing bulk DMH s as well as API in Vomacur® and Dramina® 

tablets of 50 mg and Vomex A® i.v. injection solution of 62 mg/10 mL. Both methods yielded results 

comparable to official methods, demonstrating their applicability and reliability for quantitatively 

determining DMH in various pharmaceutical formulations. 
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1. Introduction 

Dimenhydrinate (DMH) is a first-generation antihistamine available over the counter. 

It is used to prevent and relieve nausea and vomiting caused by various factors, including 

motion sickness. It is also used to treat postoperative nausea [1–8]. DMH is a complex 

compound (Figure 1), a theoclate salt that is based on a 1:1 ratio of DPH (an ethanolamine 

derivative) and 8-chlorotheophylline (a chlorinated theophylline derivative) [9–11]. 

DMH is marketed under many brand names: Driminate (Ukraine), Dramina (Croatia), 

Vomex (Germany), and Aviomarin (Poland, Slovakia). DMH is currently available in the 

pharma market as parenteral solutions, rectal suppositories, oral tablets, coated tablets, 
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suspensions, and solutions. DMH is a white crystalline powder with a pKa of 8.87, and its 

water solubility equals 3 mg/mL. 

 

Figure 1. Chemical structure of DMH. 

British Pharmacopeia (BPh 2022) recommends a non-aqueous titration as a reference 

method for the assay of DMH using 0.1 M perchloric acid, determining the end-point 

potentiometrically [12]. According to the requirements of the BPh, the quantitative 

determination of DMH in tablets is carried out by back acid-base titration against 2-

(diphenylmethoxy)-N, N-dimethylethanamine after its preliminary isolation from an alkalized 

solution of the drug by the method of ether extraction. To an ethanol solution of 2-

(diphenylmethoxy)-N, N-dimethylethanamine, add 50 mL of 0.01M hydrochloric acid and 

titrate the excess acid with 0.01M sodium hydroxide solution using a solution of methyl red as 

an indicator [13]. 

Conversely, the United States Pharmacopeia (USP) recommends a titration procedure 

for the bulk form and high-performance liquid chromatography (HPLC) for analyzing all DMH 

dosage forms [14,15].  

Some reports have addressed the quantification of DMH in various drug formulations 

and/or biological samples. Analytical methodologies involving spectrophotometry [16–18], 

voltammetry [19], in particular, adsorptive stripping voltammetry [20], HPLC with UV-

detection [21,22], liquid chromatography-tandem mass spectrometry (LC/MS/MS) [23], HPLC 

with fluorescence detection [24], high-performance thin-layer chromatography (HPTLC) 

[25,26], reversed-phase ultra-performance liquid chromatography (RP-UPLC) [27] and others 

methods [28–33] for determination of DMH either alone or in combination with other drugs 

and/or impurities were used. 

In general, as can be seen, analytical methods for the quantitative determination of 

DMH are not quite perfect. They require a lot of time and the use of relatively expensive 

instruments and toxic solvents, which violates the basic principles of “green chemistry”. 

Therefore, there is a constant need to develop analytical methods such as titrimetry and 

spectrophotometry that are simple, sensitive, rapid, accurate, precise, and inexpensive and that 

can be easily adapted in the pharmaceutical industry.  

Previously, one of the authors proposed a method for the quantitative determination of 

DPH in dosage forms based on its N-oxidation with an excess of diperoxydicarboxylic acid 

followed by the determination of unreacted diperoxyacid by the iodometric method [34]. A 

little later, this laboratory developed a new photometric technique for the DPH quantitative 

determination in a solution for injection using peroxomonosulfuric acid as an oxidant [35]. 

However, the proposed approach to the analysis was not extended to other drugs, in particular 

to DMH. 
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The current work aims to implement the mentioned approach to analysis using KHSO5 

as a stable triple salt of Oxone® as an analytical reagent and to establish two straightforward, 

fast, accurate, and low-cost techniques for the estimation of DMH in pharmaceutical 

formulations. 

2. Materials and Methods 

Dimenhydrinate (C17H21NO·C7H7ClN4O2) was purchased from Sigma-Aldrich Chemie 

GmbH, CAS 523-87-5. M. w. 469.98 g/mol. Diphenhydramine hydrochloride (DPH·HCl, 2-

(diphenylmethoxy)-N, N-dimethylethanamine chloride), a pharmacopeia standard, was used 

(SE «Ukrainian Research Center Pharmacopoeial quality of drugs» series 2).  

Dramina® tablets 50 mg blister, No. 5 (Jadran-Galenski Laboratorij d.d., Croatia). 

Composition: active substance – dimenhydrinate; 1 tablet contains 50 mg; excipients – 

microcrystalline cellulose; magnesium stearate; lactose monohydrate; povidone; crospovidone. 

Series: 212133. Certificate № 170000034953. Assay of DMH (UV-spectrophotometry): 97.8 

% (48.9 mg/tablet). Requirements: 95.0-105.0 % of the stated amount (47.5-52.5 mg/tablet). 

Vomex A® i.v. injection solution contains: the active ingredient is dimenhydrinate, 1 

ampoule with 10 mL i.v. injection solution contains 62 mg. The other ingredient is Water for 

injections. Clear glass ampoules with a clear, colorless solution. One pack contains 3 ampoules 

of 10 mL each, by Klinge Pharma GmbH (Germany).  Ch. 157336A Zul. Nr. 6581008.00.00 

Vomacur® 50 mg tablets (Certificate of conformity, Manufacturers: Hexal AG PZN: 

03815234 Zur. – Nr. 1879.99.98 Ch.B. LT2117). Active ingredient: dimenhydrinate, 1 tablet 

contains 50 mg of dimensions. The other ingredients: calcium hydrogen phosphate dihydrate, 

sodium carboxymethyl starch (type A) (Ph.Eur.), microcrystalline cellulose, lactose-

monohydrate (38 mg Lactose), magnesium stearate (Ph. Eur.), high disperse silicon dioxide, 

and 50 mg dimenhydrinate. 

Also, all of the specified excipients of medicines were purchased from local commercial 

sources. 

Potassium peroxomonosulfate, KHSO5 (ACROS Organics™), is a component in the 

commercial product called Oxone® (2KHSO5·KHSO4·K2SO4). CAS 70693-62-8, extra pure, 

min 4.5% active oxygen, formula weight is 614.78 g/mol. Moreover, it is considered a “green”-

oxidizing agent because of its nontoxic effects. Oxone has a longer shelf life than potassium 

peroxomonosulfate [36]. A white, water-soluble solid, oxone, loses <1% of its oxidizing power 

within a month. The standard electrode potential for potassium peroxomonosulfate is +1.81 V 

with a half-reaction to form hydrosulfate (pH = 0) [37].  

Sodium thiosulphate standard solution, c(Na2S2O3∙5H2O) = 0.1 mol/L, was prepared 

with 0.1 mol/L Normadose® (standard titer) in the freshly boiled and cooled double-distilled 

water with the addition of 0.5 g sodium carbonate in a 1 L volumetric flask. It is then filled 

with the same solvent to the mark at 293 K. 

Potassium iodide, 5 % solution. 5.0 g of potassium iodide was dissolved in 50 mL of 

freshly boiled and cooled water. It is then filled with the same solvent to 100 mL. The solution 

should be colorless. Hydrochloric acid and sulfuric acid solutions were prepared with 0.1 mol/L 

Normadose® (standard titer).  

The preparation of pH buffer solutions. 0.2 mol/L solution of potassium pyrophosphate: 

dissolve 66.067 g potassium pyrophosphate (potassium diphosphate) in 1 L of double-distilled 

water (pH 9.2). The preparation method of рН buffers with 7.7 and 8.6 values included dripping 

diluted hydrochloric acid into an aqueous solution of 0.2 mol/L solution of potassium 
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pyrophosphate while measuring the pH with a pH meter. The preparation method of рН buffers 

with 10.4 values included dripping 5% sodium hydroxide solution into an aqueous solution of 

0.2 mol/L potassium pyrophosphate while measuring the pH with a pH meter. The pH value of 

the solutions was controlled using a glass electrode ESL-43-07 on an "Ionomer laboratory I-

160M" (Belarus) paired with an Ag/AgCl (saturated with 3 mol/L KCl) reference electrode 

EVL-1M3.1. 

Stock standard solution of 0.02 M KHSO5. About 0.7 g of oxone was dissolved in 70 

mL of double-distilled water in a 100 mL volumetric flask, made up to the mark with the same 

solvent, and mixed thoroughly. The exact concentration was determined by iodometric 

titration, as described in our previous works [38–41].  

Working standard solution of KHSO5. 10 mL of 0.02 M KHSO5 stock standard solution 

was accurately transferred into 100 mL volumetric flasks and completed to volume with 

double-distilled water. 

All other chemicals used throughout this study were of analytical grade. All solutions 

were prepared using double-distilled water. 

2.1. Titrimetric assay. 

2.1.1. Procedure for quantitative determination of the DMH content in DPH pure substance. 

An accurately weighed portion (about 0.25 g) of the DMH pure substance was 

transferred into a 100 mL calibrated flask, dissolved in 70 mL of double-distilled water, and 

made up to the mark with the same solvent. An aliquot of solution 20.0 mL was taken and 

transferred into a 100 mL calibrated flask to flask 30 mL of a buffer mixture with a pH of 9.2 

and 10.0 mL of a 0.02 mol/L solution of KHSO5 was added, and the content was diluted to the 

mark with double distilled water and mixed thoroughly; the mixture was set aside for 5 min. 

Then, 10.0 mL of the solution was taken and placed in a conical flask for titration; 2 mL of 0.1 

mol/L sulfuric acid solution and 1 mL of 5% potassium iodide solution were added. Released 

iodine was immediately titrated with 0.02 mol/L sodium thiosulfate solution. Starch was added 

at the end of the titration. In parallel, a control experiment was conducted under similar 

conditions (in the absence of DMH, with the same amount of 0.02 mol/L reagent solution). 

The DPH (С17Н21NO) content in the DMH pure substance, calculated with reference to 

the dried substance, % (Х), was calculated according to the formula (1):  

𝑋 =
(V0 –V)×K×T×Vm ×10×100×100%

𝑚×V𝑎×(100−𝑤)
              (1) 

where V0 is the volume of standard 0.02 mol/L sodium thiosulfate solution used for 

titration in the control experiment, mL; V is the volume of standard 0.02 mol/L sodium 

thiosulfate solution used for titration in the working experiment, mL; K is the concentration 

correction factor of the standard solution of sodium thiosulfate to 0.0200 mol/L; T is the amount 

of DPH, С17Н21NO, which corresponds to 1.00 mL of a standard 0.0200 mol/L sodium 

thiosulfate solution, g⁄mL; Vm is calibrated flask volume, mL; Va is the volume of the solution 

of the dosage form taken for analysis, mL; m is weight of dosage form, g; w is water content in 

the substance, %; 10 is the dilution factor. 

1.00 mL of a standard 0.0200 mol/L solution of sodium thiosulfate is equivalent to 

0.00255355 g of DPH(C17H21NO).   

https://doi.org/10.33263/BRIAC153.045
https://biointerfaceresearch.com/


https://doi.org/10.33263/BRIAC153.045  

 https://biointerfaceresearch.com/ 5 of 15 

 

DMH contains not less than 53.0 % and not more than 55.5 % of DPH, calculated with 

reference to the dried substance. 

2.1.2. Procedure for injections. 

An accurately measured volume of 7.00 mL of test solution for injections was 

transferred into a 100 mL calibrated flask. To a flask, 20 mL of a phosphate buffer mixture 

with a pH of 9.2 and 10.0 mL of 0.02 mol/L solution of KHSO5 were added and diluted to the 

mark with double-distilled water and mixed thoroughly; a mixture was set aside for 5 min. 

Then, continue as indicated in the procedure for quantitative determination of the DMH content 

in a pure DPH substance. The content of DMH in the injection solution, in mg/10 mL (X), was 

calculated by the formula: 

𝑋 =
(V0 –V)×T×10×K

V𝑎
                           (2) 

where V0 is the volume of standard 0.02 mol/L sodium thiosulfate solution used for 

titration in the control experiment (reagent blank), mL; V is the volume of standard 0.02 mol/L 

sodium thiosulfate solution used for titration in the working experiment, mL; K is the 

concentration correction factor of the standard sodium thiosulfate solution to 0.0200 mol/L; T 

is the amount of DMH corresponding to 1 mL of standard 0.02 mol/L sodium thiosulfate 

solution, mg⁄mL; Va is the volume of the solution of the dosage form of one series taken for 

analysis, mL; 10 is the dilution factor. 

1.00 mL of a standard 0.0200 mol/L sodium thiosulfate solution corresponds to 4.6998 

mg of DMH (C17H21NO·C7H7ClN4O2), which should be 58.9...65.1 mg/10 mL in the 

preparation. 

2.1.3. Procedure for tablets. 

20 tablets were weighed and ground into a very fine powder. A precisely measured 

amount of the substance (approximately 0.23 g), equal to 50 mg of the DMH, was transferred 

into a 100 mL calibrated flask and diluted to the mark with double-distilled water. The powder 

was completely disintegrated using a mechanical stirrer, and the solution was filtered. An 

aliquot of solution 50.0 mL was taken and transferred into a 100 mL calibrated flask to flask 

30 mL of a buffer mixture with a pH of 9.2 and 10.0 mL of a 0.02 mol/L solution of KHSO5 

was added, the content was diluted to the mark with double distilled water and mixed 

thoroughly; the mixture was set aside for 5 min. Then, continue as indicated in the Procedure 

for quantitative determination of the DMH content in DPH pure substance. The content of 

DMH in tablets, X, in mg/tablet, was calculated according to the formula (3): 

𝑋 =
(𝑉0 –𝑉)×T×𝑚̅×100×10×K

𝑚×50
                  (3) 

where V0 is the volume of standard 0.02 mol/L sodium thiosulfate solution used for 

titration in the control experiment (reagent blank), mL; V is the volume of standard 0.02 mol/L 

sodium thiosulfate solution used for titration in the working experiment, mL; K is the 

concentration correction factor of the standard sodium thiosulfate solution to 0.0200 mol/L; T 

is the amount of DMH corresponding to 1.00 mL of standard 0.0200 mol/L sodium thiosulfate 

solution, mg/mL; 𝑚̅ is the average weight of one tablet, g; 50 is the test solution volume taken 
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for analysis, mL; m is the powder mass of crushed tablets, taken for analysis, g; 100 is the 

measuring flask volume, mL. 

1.00 mL of a standard 0.0200 mol/L solution of sodium thiosulfate corresponds to 

4.6998 mg/mL of DMH (C17H21NO·C7H7ClN4O2), which should be 95.0-105.0 % of the stated 

amount (47.5 ... 52.5 mg/tabl). 

The titrimetric method (A) was applicable over the concentration range of 0.5-5.0 mg 

to an end volume of 10 mL. The limit of quantification was calculated to be 0.05 mg/mL.  

2.2. Spectrophotometric assay. 

2.2.1. Procedure for DMH pure substance. 

The standard solution of pure DMH with a concentration of 3.0 mg/ mL was prepared 

by carefully weighing 300 mg of pure DMH using an analytical scale, inserting it into a 100 

mL measuring flask, then partially adding double-distilled water, then sonication, and 

subsequently adding water until the boundary mark. An accurately measured volume was 

appropriately diluted to get 30 μg/mL of DMH solution. 

Aliquots (1.00-17.00 mL) of standard DMH solution (30.0 µg/mL) were transferred 

separately into 25 mL calibrated flasks. To each flask, 5 mL 0.2 mol/L K4P2O7  (pH 9.2) and 

2.5 mL 5×10-4 mol/L of PMS were added, and the contents were diluted to the mark with 

double-distilled water and mixed. Each mixture was set aside for 30 minutes. After aliquots, 

5.00 mL of each mixture was transferred separately into 25 mL calibrated flasks. To each flask, 

1.5 mL of 1:4 sulfuric acid and 2 mL of 5% KI solution were added, and the contents were 

diluted to the mark with double-distilled water and mixed; the absorbance values at λmax = 350 

were measured against water. In parallel, a control experiment (reagent blank). A control 

measurement was carried out similar to the working experiment, with the difference that 

double-distilled water was used instead of the investigated drug solution. The difference in 

optical densities obtained in the control and working experiments, respectively (ΔA), was 

plotted versus the concentration of DMH. 

2.2.2. Procedure for tablets. 

20 tablets were weighed and ground into a very fine powder. A precise amount of the 

powder, equivalent to 50 mg of the DMH, was put into a 100 mL calibrated flask. Then, it was 

diluted to the mark volume with double-distilled water. Using a mechanical stirrer, the powder 

was completely disintegrated, and the solution was filtered. After aliquoting 10.00 mL of the 

mixture, it was transferred into a 200 mL calibrated flask, and the content was diluted to the 

mark with double-distilled water and mixed. An appropriate amount of this solution within the 

individual DMH working range was then treated according to the recommended procedure. 

2.2.3. Procedure for injections. 

A precisely measured volume was suitably diluted to achieve 31.0 µg/mL of the DMH 

solution. The recommended procedure for analyzing drug content was followed using a proper 

aliquot of the solution. 
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2.3. Identification of reactive species in reaction systems. 

2.3.1. Synthesis of DPH N-oxide. 

A 0.291 g (0.001 mol) aliquot of DPH·HCl powder was mixed with 5 mL of 1 M 

sodium hydroxide solution to liberate the free base, which was then extracted by ether, 

followed by spontaneous vaporization of the solvent. The obtained base was suspended in 5 

mL of a 12 % solution of oxone, pre-adjusted to pH 9.3 with sodium hydroxide. After 30 

minutes, a clear solution was formed, which was left to stand at room temperature for another 

30 minutes, and then water was removed from the mixture by evaporation under vacuum, and 

the residue was taken up with chloroform. The chloroform extract was dried over anhydrous 

sodium sulfate and filtered. Distillation of the filtrate under reduced pressure gave pDPH, 

which solidified on m.p. 153-155 °C (dec.). After crystallization from an аceton–ether mixture, 

the solid product melted at 131 °C (dec.). The oxidation product powder was identified by IR-

spectrometry, where the appearance of strong bands corresponding to the N-oxide group at 955 

cm–1 and at 901 cm–1 in the IR spectrum of pDPH (Figure 2), which is absent in the IR spectrum 

of DPH is evidence of the oxidation to the N-oxide form of the drug under the stated conditions 

as shown in Figure 3. 

 
Figure 2. IR-spectrum of DPH N-oxide. 

 

 
Figure 3. Scheme of the oxidation process of DPH (diphenhydramine) with KHSO5. 

Elemental analysis for C17H21NO2 (271.35) was calculated: 75.26 % (C); 7.80 % (H); 

5.16% (N). Found: 74.99 % (C); 7.90 % (H); 5.09% (N). 

TLC measurements were performed in the conditions: SiO2: Dichloromethane: 

Methanol: Ammonium hydroxide = 9:1:0.2, visualization with UV, one spot, Rf = 0.40.  
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2.3.2. Polarographic measurements. 

Polarographic measurements were performed on a Universal polarograph MTech POL-

20 (MTech Lab, Ukraine) with a three-electrode electrolytic cell (dropping mercury electrode 

(DME) as working electrode, saturated calomel electrode (SCE) as a reference and platinum 

electrode as auxiliary one) in aqueous medium of phosphate buffer solutions under an argon 

atmosphere in a thermostated vessel. Temperature was maintained at 20°C ±0.1°C. 

Characteristics of DME: m = 5.910–4 g/s. Dissolved oxygen from the electrolytic cell was 

removed with purified argon for 10–15 min. τk = 10 s in a 0.2 M NH4Cl solution without 

applying a polarization voltage. The potential was applied at a rate of V = 0.5 V/s. The accuracy 

of the potential measurement is 1 mV. The uncertainty of the current measurement is 0.1%. 

Single irreversible peaks occurred at Е = –0.98 V and Е = –1.23 V vs SCE, respectively, using 

phosphate buffers with pH 4.0 and pH 7.0 as supporting electrolytes.  

2.3.3. Fourier transform infrared (FT-IR) spectral analysis. 

Samples were scanned at the functional group region (4000-650 cm−1) using a 

Shimadzu FT-IR spectrometer (Shimadzu, Kyoto, Japan). Tablets were prepared by mixing 

200 mg of potassium bromide and 2 mg of the test compound (1 % concentration), followed 

by compression in the standard manner. FTIR-ATR Spectrum shows characteristic principal 

peaks at wavenumber, cm–1 (KBr disk): 689, 744, 901, 955 (N+—O–), 1029, 1090, 1188, 1450, 

3032. Principal peaks at wavenumbers, cm–1 (KBr disk): 713, 754, 991, 1103, 1017, 1180 

(DPH·HCl). In the IR spectrum of pDPH (Figure 2), in contrast to the spectrum of the 

corresponding DPH, a doublet of new bands belonging to (N—O) appeared at 955-900 cm−1. 

Both bands were sharp and of approximately the same average intensity: at 955 cm−1 (number 

6) and 901 cm−1 (number 7). The position and shape of these bands were in accordance with 

the literature data for amine oxides [42]. 

3. Results and Discussion 

Conditions for oxidimetric determination of the drug were preliminarily established, 

and the effect of pH medium on the kinetics of DMH oxidation was studied. The research 

results showed that the latter oxidizes the fastest in a medium with a pH of 9.2-10.4, and the 

reaction is completed in 5 minutes (Figure 4). The stoichiometry of the reaction was 

determined. It was found that one mole of DMH consumes one mole of KHSO5 (1:1). 

 
Figure 4. Kinetic curves of the N-oxidation reaction of DMH by KHSO5 depending on the pH. с(DMH) = 

110−3 mol/L; с(KHSO5) = 1.7310−3 mol/L; рН: 1 – 7.7; 2 – 8.6; 3 – 9.2; 4 – 10.4. 
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3.1. Reaction mechanism. 

3.1.1. Identification of reactive species in reaction systems. 

If we assume that the non-protonated form of the tertiary nitrogenous base DPH 

(DPH0), the monoanionic of hydrogen peroxomonosulfate (НSO5
–), and the dianion of 

peroxomonosulfate (SO5
2–) are involved in the reaction, then the kinetic equation of the 

reaction can be presented in the following form: 

Rate = kobs × с(DPH0) × с(KНSО5)          (4) 

kobs = Ka × (DPH 0) × [(НSO5 –) + β × (SO5
2–)]     (5) 

where Ka is a dissociation constant of the DPH acidic form, it should be taken into 

account that рН = –lg[H+] and [H+] =10–рН, рKа = –lg Ka and Ka = 10–рKа, рKа(DPH) = 9.1; 

KНSO5 has two dissociation constants, expressed by the following pKa values: рKa1 = 0.4 and 

рKa2 = 9.4; β is the ratio of the oxidation of DPH by the dianion and the monoanionic rate 

constants: β= (k SO5
2−/DPH0):(k HSO5

−/DPH0); (DPH0) is a mole fraction of DPH base, 

(НSO5
–) is a mole fraction of monoanionic, (SO5

2–) is a mole fraction of dianion, which are 

respectively equal to:  

(DPH0) = Ka/(Ka + [H+]) = 10–9.1/(10–9.1 + 10–рН);      (6) 

(HSO5
–) = (10–0.4 ×10–рН )/[(10–рН)2 + (10–0.4×10–рН) + (10–0.4 ×10–9.4);    (7) 

(SO5
2–) = (10–0.4 ×10–9.4)/[(10–рН )2 + (10–0.4 ×10–рН ) + (10–0.4 ×10–9.4).   (8) 

The transformation of the H1-antihistamine DPH by direct KНSO5 oxidation was 

recently investigated in [43]. The parent compounds and KНSO5 transformation product pDPH 

were measured, with the HPLC signal proportional to concentration plotted as a function of 

treatment time. 

The individual rate constants (kij, 1/M s) of the interaction of the DPH base with the 

monoanion of hydrogen peroxomonosulfate (НSO5
–) and the dianion of peroxomonosulfate 

(SO5
2–) were estimated, respectively. It is shown that k HSO5

−/ DPH0 = 175±15.9 > k SO5
2−/ 

DPH0 = 31.5±4.00 1/M s. The ratio of the oxidation of DPH by the dianion and the monoanion 

rate constants was taken by us as β = (k SO5
2−/DPH0):(k HSO5

−/DPH0) = 31.5/175 ≈ 0.2. Such 

a mechanism was further supported by the N-oxide product identified by mass spectrometry 

and nuclear magnetic resonance (NMR) analyses [43]. 

pDPH was identified by us as a product of the oxidation of the DMH base by oxone 

without isolating it from the reaction mixture by the polarographic method by comparing the 

peak value of the reduction potential with this value of the reduction potential of the previously 

obtained pDPH by the reaction of oxidation of DPH by oxone [44]. pDPH was also identified 

by IR spectrometry and elemental analysis; purity was assessed by thin-layer chromatography 

(see Experimental part). So, the interaction of DPH with KHSO5 can be represented by a 

scheme (Figure 3). 

The titrimetric method (A) was based on the N-oxidation reaction involving using 

KHSO5 and subsequent iodometric back titration of a known residual reagent. The 

spectrophotometric method (B) was based on the derivatization of DMH with KHSO5 in the 

presence of iodide to produce a chromogen (triiodide) with a wavelength of maximum 

absorption at 350 nm.  
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3.2. Specificity. 

A number of substances that may be present in preparations with DMH as excipients 

were studied under analytical conditions, comparing the difference in titrant volumes V0–V (see 

analysis method) in the absence and presence of their regulated quantities. The following 

substances in the indicated quantities had virtually no effect on the difference (V0  – V) and 

therefore do not interfere with the analysis: calcium hydrogen phosphate dihydrate – 10 mg, 

sodium carboxymethyl starch (type A) – 5 mg, microcrystalline cellulose – 60.8 mg, lactose-

monohydrate (38 mg Lactose), magnesium stearate – 1.6 mg, high disperse silicon dioxide – 

1.6 mg, povidone – 10 mg, crospovidone – 10 mg, to 50 mg of dimenhydrinate. 

Fig. 5 shows the linear calibration for the spectrophotometric method. Characteristics 

of the linear regression equation curve calibration graph are shown in Table 1. Beer's law was 

observed within the concentration range of 0.1-4.1 μg/mL, exhibiting a molar absorptivity of 

24370 L/mol cm. The limit of quantification was calculated to be 0.1 μg/mL.  

Table 1. Characteristics of linear regression equation curve calibration graph 

Characteristics Parameters 

y =  bx+ a y = (0.2439×105)x - 0.0003 

Correlation coefficient (r) 0.999 

Linear regression equation ΔA = 2.44×104×c 

Slope (b±Δb) (0.2439±0.0027)×10 5 

Intercept (a±Δa) –0.0003±0.0016 

SD of slope (Sb) 0.001×10-5 

SD of intercept (Sa) 0.0006 

LOD (3.3Sa/b), mol/L 7.65×10-8 (0.036 µg/mL) 

LOQ (10Sa/b) , mol/L 2.32×10-7 (0.11 µg/mL) 

LOD is limit of detection, LOQ is limit of quantification, SD is standard deviation. 

 
Figure 5. Calibration graph for the spectrophotometric determination of DMH. 

А number of substances that may be present in dosage forms of DMH preparations as 

excipients was investigated by analyzing the difference in absorbance at the analytical 

wavelength. Drug excipients in regulated quantities (calcium hydrogen phosphate dihydrate – 

10 mg, sodium carboxymethyl starch (type A) – 5 mg, microcrystalline cellulose – 60.8 mg, 

lactose-monohydrate (38 mg Lactose), magnesium stearate – 1.6 mg, high disperse silicon 

dioxide – 1.6 mg) give zero difference in absorption and therefore do not interfere with the 

analysis. 

0

0.05

0.1

0.15

0.2

0.25

0.05 0.25 0.45 0.65 0.85

Δ
А

с(DMH),10-5/ mol/L

https://doi.org/10.33263/BRIAC153.045
https://biointerfaceresearch.com/


https://doi.org/10.33263/BRIAC153.045  

 https://biointerfaceresearch.com/ 11 of 15 

 

The feasibility of the technique for the analysis of pharmaceutical formulations was 

investigated. Results of titrimetric and spectrophotometric determination of pure substance, 

tablets, and injection dosage forms containing DMH using oxone are given in the Table. 2. The 

suggested technique is discovered to be more straightforward, adequately selective, and 

extremely sensitive in comparison to several of the documented techniques. 

Table 2. Results of titrimetric (method A) and spectrophotometric (method B) determination of pure substance 

(i) (method A), tablets (ii), and injection (iii) dosage forms (method A, B) containing DMH using oxone. 

Statistical 

parameters 

A. Titrimetric method B. Spectrophotometric method 

i. Pure substance (%) 

ii. Tablets 

Dramina® 50 

(mg/tablet) 

iii. Injection 

Vomex A® i.v. 

(mg/per 10 mL) 

ii. Tablets 

Vomacur® 50 

(mg/tablet) 

iii Injection Vomex 

A® i.v. (mg/per 10 

mL) 

Found % 

99.4 48.5 60.6 50.6 60.0 

99.8 48.8 60.5 50.3 60.3 

98.2 49.6 61.3 49.8 61.9 

99.5 50.2 61.5 49.2 61.4 

98.2 48.6 61.7 48.6 62.5 

Metrological 

characteristics 

(n = 5, p=0.95) 

𝑥̅ 
99.0 % 

(Re:100.0%) 

49,1 mg/tabl 

(Re:98.2%) 

61.1 mg/per 

10 mL 

(Re:98.6%) 

49.7 mg 

(Re:99.3%) 

61.22 mg/per 

10 mL 

(Re: 98.7%) 

S 0.76 0.72 0.52 0.80 1.07 

∆𝑥̅ 0.95 0.90 0.65 0.99 1.33 

RSD 

(%) 
0.77 1.48 0.86 1.60 1.74 

* 

(%) 
+0.53 +0.41 –0.13 –0.48 +0.01 

Max. error, *: (𝑥̅ − 𝜇) 100/𝜇;  𝜇 − current found by standard pharmacopeial procedure; і. The quantitative 

content of DMH in the substance was 98.5%; ii. According to the quality certificate, the quantitative content 

DMH in Dramina was 48.9 mg (97.8%); the quantitative content DMH in Vomacur® 50 was 49.9 mg (99.8%); 

iii. According to the quality certificate, the quantitative content of DMH 10.0 mL of solution for injection 

contains 61.2 mg of DMH (98.71 %). RSD is Relative standard deviation; DMH is Dimenhydrinate, Re is 

Recovery 

The method is reproducible and accurate, as shown by the statistical parameters and 

recovery study data. RSD does not exceed 1.7%. (х ̅ − 𝜇) × 100/𝜇 < tα×RSD/√𝑛. So, this 

approach could be used to determine the presence of DMH drugs in quality control labs. 

4. Conclusions 

Two simple methods for the determination of DMH in tablets and injections were 

developed. These methods are based on the N-oxidation reaction using KHSO5 as an analytical 

reagent. The iodometric titration method is the first ever documented method for determining 

DMH, and the spectrophotometric method is the simplest reported method. The titrimetric 

method can be used over a wide linear dynamic range and was successfully applied to pure 

substances, tablets, and injections. The statistical characteristics and recovery study 

information revealed the accuracy and reproducibility of the methods. In addition to the 

simplicity and sensitivity of the procedures, the affordable cost of the apparatus and reagents 

is a further advantage. They're also useful because they have a high tolerance level for the usual 

ingredients that are found in most pharmaceutical blends. The possible application of these 

methods in routine quality control laboratories is suggested by their merits, which include the 

use of simple and relatively inexpensive instruments and high selectivity. 
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