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Abstract: Metal-organic frameworks (MOFs) ZIF-67 and ZIF-67@SiO2 composites were synthesized 

using a solvothermal method combined with in situ impregnation at varying SiO2 concentrations (4%, 

8%, and 12% by weight). Phase identification, crystal structure, morphology, particle size, texture 

properties, and microporosity of the materials were analyzed using XRD, FTIR, Raman spectroscopy, 

SEM-EDS, and BET techniques. The photodegradation performance of Congo red in an aqueous 

solution was evaluated by measuring adsorption capacity and degradation percentages for ZIF-67 and 

ZIF-67@SiO2 composites with different SiO2 concentrations and contact times. Phase and crystal 

structure analyses confirmed the formation of the crystalline ZIF-67 phase, with variations in 

crystallinity. FTIR and Raman spectroscopy indicated that the addition of silica did not damage the 

ZIF-67 structure. Surface morphology analysis revealed that ZIF-67 and its composite particles 

exhibited a rhombic dodecahedron shape, with particle size increasing as silica content increased. The 

ZIF-67@SiO2 (8%) composite demonstrated the highest photodegradation performance for Congo red 

under sunlight, achieving a degradation percentage of 72.79% and following pseudo-second-order 

adsorption kinetics. 

Keywords: metal-organic framework; ZIF-67; congo red; silica; photodegradation. 
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1. Introduction 

Colorants are essential chemicals in various industries; however, they are currently a 

major source of contamination in aquatic environments [1]. More than 60% of the most widely 

used synthetic dyes globally are azo dyes, with approximately 10-15% being non-recyclable 

and subsequently discharged into the environment [2-4]. One of the organic dyes commonly 
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used in industries is Congo red (CGR), a secondary diazo dye that is toxic, carcinogenic, and 

mutagenic to aquatic organisms [5-7]. CGR is extensively utilized in the textile industry, 

papermaking, plastics, paints, wood, and other sectors. Classified as a hazardous organic dye, 

CGR exhibits high toxicity even at low concentrations and, therefore, must not be 

indiscriminately discharged into the environment due to its significant ecological risks [8]. 

Consequently, an effective and environmentally friendly technique is needed to remove dyes, 

particularly CGR [9]. Various chemical and physical methods have been developed for this 

purpose, including biological oxidation [10], adsorption [11], photocatalysis [12,13], and ion 

exchange [14]. Among these methods, photocatalysis stands out as one of the most promising 

due to its great efficiency, affordability, and operational simplicity. 

An ideal catalyst for degradation should be stable under acidic or basic conditions, 

highly porous, cost-effective, easy to apply, and simple to retrieve [14-16]. The effectiveness 

of catalytic methods depends on factors such as selectivity, kinetics, rapid mass transfer, high 

specific surface area, low-cost preparation, flexibility, and recyclability [17-19]. Porous 

materials, such as metal-organic frameworks (MOFs), have emerged as promising catalysts 

[20]. MOFs are materials with pores composed of metal nodes and organic ligands as linkers, 

offering unique properties such as a large surface area and tunable bandgap energy [21-24]. To 

enhance MOF efficiency, researchers leverage their flexibility in modifying pore structure, 

specific surface area, surface active sites, crystallinity, topology/morphology, and chemical-

physical stability [25-30]. Zeolitic Imidazolate Frameworks (ZIF)-67, a type of multifunctional 

MOF, has been applied in various domains, including photocatalysis [31,32], adsorption 

[33,34], sensors [35], gas storage, catalysis [26], and supercapacitors [36]. ZIF-67 possesses a 

large surface area (SBET > 1700 m²/g), providing abundant active sites [32]. 

In recent decades, numerous studies have attempted to enhance ZIF-67 efficiency 

through metal incorporation, post-synthetic metalation, functional group addition, 

mineralization, structure-directing agents, and carbon hybridization [37-39]. These efforts have 

resulted in composites with superior performance compared to unmodified ZIF-67. For 

example, Xuan et al. reported the synthesis of hydroxyapatite-modified ZIF-67 composites, 

exhibiting effective and selective uranium (IV) elimination from wastewater [40]. Similarly, 

ZIF-67/CNF/PANI composites synthesized via a hydrothermal method at room temperature 

have been used as electrochemical sensors [41]. Composite microspheres, such as ZIF-67/PES, 

have demonstrated potential applications in removing triarylmethane dyes [42]. Additionally, 

Singh et al. developed ZIF-67/PVA nanofibers with high potential for water treatment 

remediation [43]. Apart from metals and polymers, silica-rich minerals such as silica, zeolite, 

kaolin, and clay can be combined with MOFs to enhance their performance [44]. These silica-

based materials are preferred due to their porous characteristics, high surface area, adjustable 

polarity based on surface charge density, and thermal and chemical stability [45,46]. For 

instance, Pawar et al. synthesized MOF@sepiolite composites, which exhibited perfect 

octahedral MOF morphology, excellent dispersion on the sepiolite surface, thermal stability, 

and efficient performance in degrading RhB dye [47]. Furthermore, MOF@clay composites 

synthesized via solvothermal methods demonstrated fast, efficient, and stable absorption 

performance in reducing organic pollutants [48]. Bentonite, when used as a supporting material 

for ZIF-8, yielded bentonite/ZIF-8 composites with high stability for the photodegradation of 

congo red dye [49].  
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The synthesis of MOFs ZIF-67 composites using silica-based minerals has not been 

widely reported. Silica is a compound with excellent chemical stability and mechanical 

properties, offering significant benefits when combined with MOFs to enhance their properties 

and performance. Silica not only provides structured support for MOF materials but also 

improves material stability through hydrophobic interactions and covalent bonding. For 

instance, Sun et al. synthesized SiO₂@ZIF-67/CNTs composites, exhibiting good adsorption 

performance for methyl orange (112 mg/g) at low temperatures (5 °C). The calcined composite 

demonstrated a specific surface area of 1135 m²/g, as high-temperature calcination evaporates 

organic materials within the material, thereby increasing its porosity and ultimately enhancing 

its specific surface area [50]. Wang et al. explored MXene membranes modified with ZIF-67 

and sepiolite. By utilizing the high porosity and active sites of ZIF-67, as well as the negative 

surface charge and hydrophilicity of sepiolite, the separation efficiency of the MXene 

membrane was significantly enhanced [51]. Recently, a hybrid nanostructure design based on 

ZIF-67 and silica was developed to produce yolk-shell structured ZIF-67@SiO₂ 

nanocomposites. The study revealed that the specific surface area (SSA) of silica had a greater 

impact on improving energy storage performance (electrochemical properties) compared to the 

porosity properties of ZIF-67 [52]. 

In this research, in situimpregnation of mesoporous silica powder into MOFs ZIF-67 

was performed using a solvothermal method, which was subsequently applied to remove 

Congo red dye pollutants. The addition of silica, characterized by larger pore sizes 

(mesopores), non-toxic and environmentally friendly properties, and high chemical and 

thermal stability, was expected to enhance the chemical and physical stability, as well as the 

catalytic and adsorption performance, of ZIF-67 in addressing environmental water pollutant 

dyes. The physicochemical characteristics of the resulting ZIF-67@SiO₂ composite were 

analyzed using several instrumental techniques, including X-ray Diffraction (XRD), Fourier 

Transform Infrared Spectroscopy (FTIR), Raman Spectroscopy, Scanning Electron 

Microscopy-Energy Dispersive Spectroscopy (SEM-EDS), and N₂ adsorption-desorption 

isotherms with Brunauer-Emmett-Teller (BET) analysis. The photocatalytic activity of the 

composite was evaluated based on the variation in silica mass added to ZIF-67 and the contact 

time, using Ultraviolet-Visible Spectroscopy (UV-Vis) under direct sunlight radiation. 

2. Materials and Methods 

2.1. Materials. 

Co(NO₃)₂·6H₂O, methanol, chloroform, and Congo red were purchased from Merck 

KGaA. 2-methylimidazole (2-MeIM) was purchased from Sigma-Aldrich, and silica powder 

was obtained from Unichem Specialty Chemicals (LLC). Distilled water (aquadest) was 

purchased from Brataco. All chemicals and solvents used in this study were of high quality and 

were used without further purification. 

2.2. Synthesis of ZIF-67 and ZIF-67@SiO₂ composites. 

The synthesis of ZIF-67 MOFs was adapted from the procedure by Saeed et al. with 

slight modifications [53]. ZIF-67 was synthesized using a metal-to-ligand molar ratio of 1:8 

(mmol/mmol). Co(NO₃)₂·6H₂O (1.436 g) was dissolved in 100 mL of methanol, and 2-

methylimidazole (3.244 g) was dissolved in 100 mL of methanol in a separate container. The 
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Co(NO₃)₂·6H₂O solution was slowly added to a Duran bottle containing the 2-methylimidazole 

solution. The resulting mixture was stirred with a magnetic stirrer for 3 hours and left to stand 

for 24 hours at room temperature. The precipitate was separated using a centrifuge at 4000 rpm 

for 30 minutes and washed three times with methanol and once with chloroform. The product 

was then dried in an oven at 100 °C for 36 hours and further characterized. 

The synthesis of the ZIF-67@SiO₂ composite followed the procedure for pure ZIF-67 

synthesis, with the addition of SiO₂ prior to adding the Co(NO₃)₂·6H₂O solution. SiO₂ was 

added to the mixture of 2-MeIM and SiO₂ in varying mass percentages of 4%, 8%, and 12% 

relative to the mass of pure ZIF-67. This step aimed to determine the optimal silica mass that 

would enhance the photocatalytic properties of the synthesized ZIF-67@SiO₂. In previous 

research by Ediati et al. [54], ZIF-67 composites with MCM-41 were synthesized with mass 

percentages of 2.5%, 5%, and 10%. The study revealed a trend in which the adsorption capacity 

of the composite increased with higher mass percentages. 

2.3. Photocatalytic degradation study. 

Congo red (CGR) was used as the dye pollutant to evaluate the photocatalytic properties 

of ZIF-67 and ZIF-67@SiO₂. Adsorption studies were performed in 30 mL vials containing 

0.01 g of each catalyst mixed with 20 mL of CGR solution (initial concentration = 40 mg/L). 

The mixtures were stirred in the dark for 30 minutes to reach adsorption equilibrium. Samples 

were then centrifuged to separate the catalysts, and the CGR concentration was measured at 

499 nm using UV-Vis spectroscopy. Subsequently, the samples were exposed to sunlight for 

30, 60, 90, and 120 minutes. These time intervals were used to examine the degradation kinetics 

and to determine whether the degradation followed first-order, second-order, or complex 

kinetics. Time intervals also provided insights into the structural and functional stability of 

ZIF-67 before degradation began [55]. Periodic samples were centrifuged, and the final CGR 

concentration was determined. The percentage degradation of the pollutant was calculated 

using the following formula: 

% 𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 =
𝐶𝑜−𝐶𝑒

𝐶𝑜
𝑋 100%              (1) 

Notes: Co and Ce are the initial and final CGR concentrations (mg/L), respectively. 

The adsorption capacity (qt; mg/g) was calculated using the following formula: 

𝑞𝑡 =
(𝐶𝑜−𝐶𝑒)𝑉

𝑤
                                                                                                               (2) 

Notes: Co and Ce are the initial and equilibrium CGR concentrations (mg/L), V is the solution 

volume (L), and w is the catalyst mass (g). 

2.4. Characterization. 

The crystal structures of all samples were characterized using X-ray diffraction (XRD) 

on a PANalytical X’Pert diffractometer with Cu-Kα radiation at 40 kV and 30 mA, within a 

scanning range of 2θ = 5–70°. The obtained XRD diffraction patterns were analyzed to 

calculate the lattice parameters of each sample using the Rietveld Refinement method with 

Rietica Version 4.2 software. Chemical functional group analysis was conducted using a 

Thermo Scientific iD1 FTIR spectrometer with KBr pellets. Spectra were collected using 64 

scans in the 400–4000 cm⁻¹ range at a resolution of 4 cm⁻¹. Chemical and molecular structures 

of the samples were analyzed using a Bruker SENTERRA II Raman Microscope with a 785 

nm excitation laser, a power output of 10 mW, an aperture of 50 × 1000 µm, a resolution of 4 
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cm⁻¹, a spectral range of 45–3630 cm⁻¹, and a 50× magnification microscope. Morphological 

analysis and elemental distribution on the sample surfaces were observed using a Hitachi 

SU3500 SEM instrument equipped with an EDS detector. Observations were conducted at an 

accelerating voltage of 10 kV in secondary electron imaging (SEI) mode with various 

magnifications. The textural and microporous properties of ZIF-67 and its composites were 

determined by N₂ adsorption-desorption at 77 K over a relative pressure range of 0.01–0.99 

using a Brunauer-Emmett-Teller (BET) surface area analyzer (BELSOPR MAX G, Japan).  

3. Results and Discussion 

3.1. Characterization of materials. 

Metal-organic frameworks (MOFs) ZIF-67 and ZIF-67@SiO2 composites were 

successfully synthesized using the solvothermal method. Figure 1(i) shows the XRD pattern of 

ZIF-67, exhibiting peaks at 2θ = 7.32° (001), 10.35° (002), 12.70° (112), 18.05° (222), 24.35° 

(233), and 26.57° (134). These peaks corresponded to the standard pattern of ZIF-67 (CCDC 

Code = GITTOT) and aligned with previous studies [53], [56-57].  

 
Figure 1. (i) XRD pattern of silica, ZIF-67, reference standard (CCDC code = GITTOT), and ZIF-67@SiO2 

composites with silica variation in (a) 4 %, (b) 8%, and (b) 12%; (ii) fitting on (011) plane of ZIF-67 peak. 
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The XRD spectrum of the ZIF-67@SiO2 composite displayed a very similar diffraction 

pattern to that ZIF-67. Figure 1(i) also indicates that ZIF-67 and ZIF-67@SiO2 composites 

exhibited high crystallinity, with the crystallinity degree of ZIF-67 reaching 96.3%. The 

addition of silica slightly reduced the peak intensity and crystallinity degree, as shown in Figure 

1(ii), based on XRD peak fitting at 7.32° (001). Moreover, the degree of crystallinity in the 

ZIF-67@SiO2 composite decreased with various silica mass additions but without disrupting 

the ZIF-67 crystal structure, as presented in Table 1.  

Table 1. Cell parameters ZIF-67 and ZIF-67@SiO2. 

Materials 
Crystal lattice (Å) Corner (°) Cell 

volume 
Rp Rwp 

Degree of 

crystallinity (%) 

Crystal 

size (nm) a =b=c α= β= ƴ 

ZIF-67 16.1343 (3) 90 4200.028 1.58 3.59 96,29 10,99 

ZIF-67@SiO2 (4) 16.4384 (2) 90 4442.081 1.76 3.73 90,32 15,46 

ZIF-67@SiO2 (8) 16.4733 (3) 90 4470.421 2.15 3.83 89,45 12,46 

ZIF-67@SiO2 (12) 16.7872 (1) 90 4730.803 2.77 4.02 93,5 13,16 

This reduction in peak intensity and crystallinity degree might be attributed to the 

amorphous nature of the added mesoporous silica [58]. Interestingly, a slight increase in peak 

intensity at 22–23° was observed, likely due to the overlap of the ZIF-67 peak at 22.09° with 

the silica peak at 2θ = 22.53°. The weak representative silica peak might stem from the 

amorphous nature and low mass percentage of silica. These findings confirmed the successful 

formation of the ZIF-67@SiO2 composite material. Table 1 provides the refinement results of 

the XRD diffraction patterns for each sample, showing cubic crystal symmetry with the space 

group I43m and unit cell parameters a = b = c. An increase in the percentage of silica mass in 

ZIF-67 led to larger unit cell parameters and cell volumes without compromising the ZIF-67 

crystal structure (see Table 1). This result suggested the incorporation of silica into the ZIF-67 

framework. The addition of larger silica particles (mesoporous) compared to ZIF-67 

(microporous) likely caused lattice parameters and cell volume expansion [59]. 

The successful synthesis of ZIF-67 and ZIF-67@SiO2 composites was further 

confirmed through FTIR spectroscopy, as shown in Figure 2. The observed peaks were 

primarily associated with ZIF-67 and were largely due to the organic ligand 2-methylimidazole 

(2-MeIM). The absorption peak at 419 cm⁻¹ corresponded to the stretching vibration of Co-N, 

indicating an interaction between the Co metal and the nitrogen atom of 2-MeIM [60]. The in-

plane and out-of-plane bending vibrations, along with the stretching vibration of C=N in the 

ligand 2-MeIM, appeared at 689 cm⁻¹, 755 cm⁻¹, and 1578 cm⁻¹, respectively. The absorption 

bands at 993 cm⁻¹ and 1141 cm⁻¹ were attributed to the bending and stretching vibrations of C-

N. Additionally, the peak at 2921 cm⁻¹ resulted from the stretching vibration of the aromatic 

C-H ring in 2-methylimidazole [61] or the symmetric stretching vibration of CH₃ [62]. A broad 

peak in the 3200–3500 cm⁻¹ range suggested the presence of bound water in the sample. Silica 

absorption peaks were detected at 470 cm⁻¹ and 1109 cm⁻¹, corresponding to the bending and 

asymmetric stretching vibrations of Si-O-Si. In the FTIR spectrum, the increased intensity was 

evident in the 1109–1141 cm⁻¹ region, correlating with the vibration peak of SiO2 molecules. 

This observation further supported the successful formation of the ZIF-67@SiO2 composite 

while maintaining the structural integrity of the ZIF-67 [63]. 

Raman spectroscopy was utilized to analyze ZIF-67 in greater depth. As shown in 

Figure 3, the Raman spectrum of ZIF-67 and ZIF-67@SiO2 composites revealed characteristic 

peaks of ZIF-67 at 178, 260, and 686 cm⁻¹, corresponding to Co ions and 2-methylimidazole 

ligands of ZIF-67 [54, 64-65]. 

https://doi.org/10.33263/BRIAC154.051
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Figure 2. FTIR spectra of silica, ZIF-67, and ZIF-67@SiO2 with different silica concentrations (4, 8, and 12%). 

The Raman spectrum also displayed variations in peak intensity and sharpness during 

the formation of the ZIF-67@SiO2 composite. Notably, the peak at 686 cm⁻¹ showed increased 

intensity with the addition of 4% and 8% silica but slightly decreased when 12% silica was 

added. The incorporation of silica mesopores into the ZIF-67 structure caused the crystal 

structure to become denser and the crystal size to increase, as shown in Table 1 [66]. This 

structural densification explained the initial increase in peak intensity with 4% and 8% silica. 

However, as more silica was added, the amorphous properties dominated, leading to decreased 

crystallinity and intensity. These observations were consistent with the XRD characterization 

results, showing a decline in crystallinity with increasing silica content. 

 
Figure 3. Raman spectra of ZIF-67 and ZIF-67@SiO2 with different silica concentrations (4, 8, and 12%). 

Figure 4(i) illustrates the morphology of ZIF-67 and ZIF-67@SiO2 composites at 

various silica mass percentages. Both ZIF-67 and ZIF-67@SiO2 composites exhibited a 

rhombic dodecahedral particle shape, which is characteristic of ZIF-67 particles [67,68].  

https://doi.org/10.33263/BRIAC154.051
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Figure 4. (i) SEM micrograph of (a) ZIF-67, (b) ZIF-67@SiO2 (4%), (c) ZIF-67@SiO2 (8%), and (d) ZIF-

67@SiO2 (12%); (ii) Histogram of the particle size distribution of samples. 

 
Figure 5. (i) Elemental mapping and (ii) EDS spectrum of (a) ZIF-67, (b) ZIF-67@SiO2 (4), (c) ZIF-67@SiO2 

(8), and (d) ZIF-67@SiO2 (12).  

The addition of silica enhanced the formation of rhombic dodecahedral morphology, as 

indicated by sharper edges, smoother surfaces, and larger particle sizes (see Fig. S1). However, 

small silica particles were observed to adhere to the surface of ZIF-67 particles. When 12% 

silica was added, the crystal structure of ZIF-67 exhibited a reduced crystallinity, increased 
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crystal size, and a rougher surface texture (see Figure 4d(i)). This decrease in crystallinity with 

12% silica addition aligned with the findings from XRD, FTIR, and Raman characterization. 

Elemental mapping and distribution of elements in ZIF-67 and ZIF-67@SiO2 

composites are presented in Figure 5. EDS mapping confirmed that Co, C, N, and O were 

evenly distributed on the material's surface. Co, C, and N were core components of ZIF-67, 

based on its molecular formula Co(CH₃C₃H₃N₂)₂. The element O was introduced by water 

molecules incorporated into the structure during synthesis [69]. Additionally, a uniform 

distribution of Si was observed on the surface of ZIF-67@SiO2 composite particles (see Figure 

5b-d), indicating the successful impregnation of silica into ZIF-67 particles. This was further 

supported by the increasing concentration of silica corresponding to the higher percentage of 

added silica mass. Detailed information on the elemental content of the materials is provided 

in Supplementary Table S1. 

3.2. Adsorption performance. 

The nitrogen adsorption-desorption isotherms of ZIF-67 and ZIF-67@SiO2 at 77 K are 

shown in Figure 6, and their textural parameters are detailed in Table 2. Based on Figure 6, the 

physisorption isotherms of ZIF-67 and ZIF-67@SiO2 were classified as type I microstructure 

isotherms, according to IUPAC [70]. The isotherms showed a sharp increase in adsorption at 

low relative pressure (P/P₀ below 0.1), characteristic of microporous materials. For ZIF-

67@SiO2, the amount of adsorbed gas increased, and a narrow vertical hysteresis loop 

indicated capillary condensation in mesopores [54], [71-72]. 

 
Figure 6. N2 adsorption-desorption isotherms. 

Table 2. Textural parameters of the samples. 

Samples SBET (m2/g) Volume total (cm3/g) Average pore size (nm) 

Silica 153.73 1.7971 23.379 

ZIF-67 2077 0.9807 0.9443 

ZIF-67@SiO2 (8) 1626 0.8215 1.0104 

The pore size distribution, determined using the nonlocal density functional theory 

(NLDFT) method, is displayed in Figure 7. The maximum pore size distribution curve for ZIF-

67 and ZIF-67@SiO2 was observed at 1.6 nm and 1.7 nm, respectively, indicating that both 

samples possessed micropores. The specific surface area (SSA) of ZIF-67 and ZIF-67@SiO2 
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was calculated using the BET model, yielding values of 2077 m²/g and 1626 m²/g, respectively. 

The BET SSA of ZIF-67 in this study was higher than previously reported values by Nazir et 

al. [73] (1030 m²/g), Wang et al. [74] (1780 m²/g), and Saghir and Xiao [68] (1138.65 m²/g), 

suggesting that the synthesis method used here produced ZIF-67 with a larger specific surface 

area. The SSA of ZIF-67@SiO2 was smaller than that of ZIF-67, highlighting the contribution 

of silica. Silica could block some of the pores in ZIF-67, resulting in a reduced SSA for the 

composite. The addition of silica to ZIF-67 has been reported to either decrease [54] or increase 

[38] the surface area, depending on the synthesis conditions. Furthermore, the pore volume of 

ZIF-67 decreased from 0.9807 cm³/g to 0.8215 cm³/g upon the addition of silica in ZIF-

67@SiO2. However, the pore size of ZIF-67@SiO2 was larger than that of ZIF-67 alone. These 

findings were consistent with studies by Lei et al. [75] and Saghir and Xiao [68], reporting that 

the incorporation of Fe₃O₄ or Ag particles into ZIF-67 reduced its specific surface area. The 

observed decrease in specific surface area, pore volume, and active sites in ZIF-67@SiO2 could 

be attributed to the dilution effect caused by mesoporous silica [76]. The results of the N₂ 

adsorption-desorption analysis indicated that ZIF-67 possessed a large specific surface area, 

providing more active sites and a larger contact area, which was advantageous for adsorption 

applications [77].  

 

Figure 7. Pore size distribution with NLDFT model. 

3.3. Photodegradation of CGR in ZIF-67 and ZIF-67@SiO2 under sunlight. 

The reaction mixture was maintained in a dark environment for 30 minutes to achieve 

adsorption-desorption equilibrium before the photocatalytic activity test. For the photocatalytic 

activity test, the saturated dye concentration was used as the initial dye concentration (C₀). The 

photodegradation performance of ZIF-67 and ZIF-67@SiO2 toward Congo red (CGR) under 

sunlight exposure for contact times ranging from 30 to 120 minutes is shown in Figure 8. 

ZIF-67 exhibited the highest photodegradation efficiency toward CGR, achieving 

85.32% degradation with an adsorption capacity of 67.66 mg/g at a contact time of 120 minutes. 

The relatively large specific surface area, pore volume, and pore size of ZIF-67 facilitated the 

diffusion of CGR dye molecules onto its surface, where they interacted electrostatically with 

cobalt ions [68, 78]. Furthermore, the positive surface charge of ZIF-67 (zeta potential values 

ranging from 2.88 mV to 14.37 mV at pH 7–10) enhanced its effectiveness in degrading anionic 

dyes such as CGR [20, 28]. The effect of contact time on photodegradation activity was 

evaluated using a one-way analysis of variance (ANOVA) at a significance level of α = 0.05 

in Microsoft Excel. The results revealed that contact time significantly affected the degradation 
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activity (% degradation) of CGR, with a p-value of 0.0029 (p < 0.05) (data presented in Table 

S2) [79]. 

 
Figure 8. Congo red degradation of ZIF-67 and ZIF-67@SiO2. 

The addition of silica to ZIF-67 resulted in a 12.5% reduction in degradation efficiency 

toward CGR, attributed to textural changes such as a decrease in pore volume and specific 

surface area. However, when 8% silica was added, ZIF-67@SiO2 achieved a maximum 

degradation percentage of 72.79% with an adsorption capacity of 57,7 mg/g at a contact time 

of 120 minutes. The composite's capacity to degrade CGR exhibits a higher degradation 

percentage than prior studies by Guan et al., which demonstrated that the Fe3O4@ZIF-67 

composite was capable of decomposing Congo red by 70% [80]. In contrast, research by Tong 

et al. indicated that ZIF-67@CeO could achieve a more optimal degradation of Congo red, 

reaching 98.8%, though with the inclusion of a persulfate activator [81]. Murali et al. conducted 

degradation studies of ZIF-67 on methylene blue, confirming its capacity to efficiently degrade 

up to 80% within 180 minutes [82]. The adsorption capacity (Qt) of all composite samples 

increased with a contact time of up to 120 minutes, even though the degradation efficiency of 

ZIF-67@SiO2 decreased (see Figure 9). Specifically, the adsorption capacity of ZIF-67, ZIF-

67@SiO2 (4), ZIF-67@SiO2 (8), and ZIF-67@SiO2 (12) increased by 5.75%, 8.5%, 8.25%, 

and 7.23%, respectively, across different contact times, indicating that ZIF-67@SiO2 had a 

higher adsorption capacity rate compared to ZIF-67. 

 
Figure 9. Adsorption capacity curve of Congo red. 
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The reaction rate for each sample was determined using adsorption kinetics models, 

specifically the pseudo-first-order (PFO) and pseudo-second-order (PSO) equations as follows: 

𝐿𝑛 (𝑄𝑒 − 𝑄𝑡) = 𝐿𝑛 𝑄𝑒 − 𝐾1𝑡                               (3) 

𝑡

𝑄𝑡
=

1

𝐾2𝑄𝑒2 +
𝑡

𝑄𝑒
                                         (4) 

The PFO and PSO kinetic models for CGR adsorption in this study are shown in Figures 

10a and 10b. The adsorption kinetics were evaluated by comparing the R² values of each model, 

as detailed in Table 3. The PFO model predicted adsorption kinetics by plotting Ln(Qe-Qt) 

versus t, resulting in a straight line with a negative slope K1 and intercept Ln Qe. Similarly, the 

PSO model was evaluated by plotting t/Qt versus t. The results indicated that the R² value of 

the PSO model was greater than that of the PFO model, suggesting that the adsorption process 

of CGR by ZIF-67 and ZIF-67@SiO2 followed the pseudo-second-order kinetics model. This 

result implied that the adsorption process was chemically driven (chemisorption) and involved 

electrostatic interactions between the catalyst and CGR [49]. 

 
Figure 10. Plots of (a) pseudo-first-order; (b) pseudo-second-order kinetics for the adsorption of CGR. 

Table 3. Kinetic parameters and correlation coefficients for the pseudo-first-order and pseudo-second-order 

equations. 

Catalyst Qe(exp) 

Pseudo-first-order Pseudo-second-order 

Qe(cal) K1 R2 Qe(cal) K2 R2 

ZIF-67 67.6666 51.0697 0.0339 0.9937 76.9230 27.616 0.9999 

ZIF-67@SiO2 (4) 57.5333 55.5444 0.0236 0.9925 80.6451 10.536 0.9961 

ZIF-67@SiO2 (8) 57.7333 59.3514 0.0258 0.9726 79.3650 10.764 0.994 

ZIF-67@SiO2 (12) 53.7333 48.1633 0.0263 0.9918 68.4931 9.416 0.9986 

The correlation between the degree of crystallinity and specific surface area (SSA) on 

the degradation performance of the samples against Congo red is summarized in Table 4. 

Table 4. The correlation between the degree of crystallinity, specific surface area (SSA), and degradation 

performance of samples.  

Samples 
Degree of 

crystallinity (%) 

Specific surface 

area (m2/g) 

Congo red 

degradation (%) 

Adsorption 

capacity rate (%) 

Silica Amorphous 153.73 6.05 3.06 

ZIF-67 96.29 2077 85.32 5.75 

ZIF-67@SiO2 (8) 89.45 1626 72.79 8.25 

The mechanism of CGR degradation using the ZIF-67@SiO2 catalyst involved the 

formation of reactive oxygen species. When exposed to sunlight, electrons in the valence band 
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were excited to the conduction band, generating electron-hole pairs (e⁻ and h⁺). These electrons 

and holes reacted with oxygen and water to form superoxide radicals (O₂⁻·) and hydroxyl 

radicals (·OH), which were highly reactive. These reactive species degraded CGR dye into 

harmless products such as H₂O and CO₂. Overall, ZIF-67@SiO2 effectively enhanced the 

photodegradation of pollutants through the generation of reactive oxygen species [83]. An 

illustration of the photodegradation mechanism of Congo red from ZIF-67@SiO2 in this study 

is shown in Figure 11. 

  

Figure 11. The Illustration of the photodegradation mechanism of Congo red from ZIF-67@SiO2. 

4. Conclusion 

ZIF-67 and silica-based ZIF-67 (ZIF-67@SiO₂) composites were successfully 

synthesized using a solvothermal method with methanol as the solvent. XRD, FTIR, and 

Raman spectroscopy analyses confirmed that the addition of silica to ZIF-67 resulted in the 

formation of the ZIF-67 composite without altering its crystal structure. SEM analysis indicated 

that increasing the silica percentage effectively improved the rhombic dodecahedron crystal 

morphology and increased crystal size but reduced crystallinity. Elemental mapping confirmed 

the successful impregnation of silica, exhibiting the presence of Co, C, N, O, and Si on the 

surface of ZIF-67@SiO₂. Texture analysis revealed that both ZIF-67 and ZIF-67@SiO₂ were 

microporous materials, with specific surface areas of 2077 m²/g and 1626 m²/g, respectively. 

The photocatalytic activity tests showed that ZIF-67 and ZIF-67@SiO₂ (8%) effectively 

degraded Congo red (CGR) under direct sunlight after 120 minutes, achieving 85.32% and 

72.79%, respectively. Therefore, this research concludes that ZIF-67@SiO₂ (8%) exhibited the 

best performance as a catalyst for degrading Congo red dye. Further research is recommended 

to optimize the photocatalytic performance of the ZIF-67@SiO₂ composite to remove other 

organic pollutants. ZIF-67-based materials modified with micro, meso, and macroporous 

materials have great potential in the removal of pollutants in aquatic systems due to pore 

characteristics that can increase diffusion rates and reduce mass transfer barriers of reactant or 

product molecules. However, large-scale production of ZIF-67-based materials for 

photocatalytic applications in industrial wastewater systems must consider the use of synthesis 

methods through simple, low-cost, and environmentally friendly approaches. This is a 

challenge and concern for the development of more optimized and efficient ZIF-67 materials 

in the future. 
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Supplementary materials 

 

Figure S1. SEM Micrograph of ZIF-67 and ZIF-67@SiO2 with percentage mass silica. 

 

 

Figure S2. Surface Area correlates with photocatalytic performance. 

Table S1. EDS analysis of the sample. 

Elememt 

(% weight) 

Sampel 

ZIF-67 ZIF-67@SiO2 (4) ZIF-67@SiO2 (8) ZIF-67@SiO2 (12) 

C 62,27 45,11 33,83 59,97 

N 20,13 23,96 17,15 21,12 

O 4,38 1,78 1,45 4,85 

Co 13,23 28,81 47,00 13,53 

Si - 0,27 0,57 0,51 

Table S2.  ANOVA One Way Photodegradation CGR. 

Source Sum of Squares Degrees of Freedom Mean Squares F-value P-value  
Between Groups 8733.69761 1 8733.69761 17.78365 0.002928  

Within Groups 3928.865434 8 491.1081792    

Total 12662.56304 9     
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