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Abstract: Modern material research relies heavily on metal-organic frameworks (MOFs), which are
known for their highly porous and structurally tunable architectures, as well as their significance in drug
delivery, gas storage, and catalysis. Topological indices (T1s) are numerical parameters that are graph
invariant and describe the topology of a graph. In quantitative structure-property relationship (QSPR)
and quantitative structure-activity relationship (QSAR) analysis, these topological indices and entropy
measures (Es), obtained using these topological indices, help in predicting the physicochemical
properties of compounds. In this study, we derive closed formulae for several reduced reverse (RR)
degree-based topological indices and their corresponding entropy measures of the Tetracyanobenzene
(TCNB) metal-organic framework TCNB(p, q). In order to prove the essential significance and validate
the obtained results, we additionally perform a graphical and comparative analysis between these
indices for various values of p and q.

Keywords: tetracyanobenzene metal-organic framework; topological indices; graph entropies;
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1. Introduction

Metal-organic frameworks, or MOFs, form a novel class of hybrid crystal materials that
are porous in nature and composed of metal ions and organic linkers. MOFs have garnered
interest from various researchers due to their unique properties and diverse applications [1-3].
Due to their strong biodegradability and biocompatibility, MOFs are also considered viable
options for constructing biosensors.

MOFs have various applications, including gas storage, adsorption, and separation, due
to their porous nature and large surface area. Their clearly defined structure provides specific
chemical reaction conditions, which can enhance the selectivity and effectiveness of catalyst
creation [4]. They are also studied for their application in medication delivery. They can
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encapsulate pharmaceuticals due to their porous nature, which enables targeted distribution and
controlled drug release [5, 6]. Additionally, MOFs have a wide range of uses in detection and
sensing. Their ability to modify their systems in response to specific compounds makes them
useful for identifying contaminants, pollution, and even disease biomarkers. MOFs are being
researched for electrochemical power applications in supercapacitors and batteries. Their
design may enhance the capacity and efficiency of the power storage devices [7].

Tetracyanobenzene, or TCNB, is a highly conjugated, electron-deficient aromatic
compound widely recognized for its multifunctional properties and applications in advanced
materials. MOFs incorporating TCN B are synthesized by reacting TCN B with a metal salt in a
solvent, where the metal ions form an interconnected network by coordinating with the cyano
groups of the TCNB molecules. Such MOFs are characterized by electrical conductivity, high
porosity, and thermal stability, thereby contributing to a wide range of applications.
Additionally, in material science, TCNB plays a key role as a linker molecule in the
construction of MOFs. Due to its strong electron-accepting ability and multiple coordination
sites, TCNB is capable of linking metal centers to form extended crystalline frameworks. These
frameworks exhibit potential for applications in gas storage, molecular recognition, catalysis,
and optical materials. Further, TCNB is well-known for forming charge-transfer complexes
with electron donors, enabling the design of conductive materials, organic semiconductors, and
nonlinear optical systems. Moreover, in chemical graph theory, TCNB provides ideal case
studies due to their symmetry and substituent patterns. For related work on MOFs and their
applications, we cite [8-18].

Aqgraph G = (V, E) is adiscrete structure, with the vertex set V and the edge set E, with
every element uv € E representing an edge between the vertices u,v € V. The degree d,, of a
vertex u € V is defined as the number of vertices adjacent to it in G. As defined in [19], the
reverse vertex degree R(u) of avertex u € V is defined as R(u) = A(G) — d,, + 1, where A(G)
is the maximum degree of any vertex in G. Further, the reduced reverse vertex degree of u [20],
denoted RR(u), is defined as:

RR(u) = A(G) —dy +2 (1)

The topological properties of a complex chemical or molecular structure can be
analyzed effectively by representing the structure as a graph, where atoms are represented by
vertices and the connections between them are represented by edges. Topological indices
(T1s), or molecular descriptors, are graph invariants, used to assess the various physico-
chemical properties of the respective chemical compounds by means of the structural properties
of the underlying graphs. These indices depend on various aspects of the graph, including
vertex degree, distance, and graph spectrum. Some of the commonly studied TIs in literature
are the Wiener index W (G), Hosoya index Z(G), Zagreb indices M, (G), M,(G), Randi¢ index
R(G), Atom-bond connectivity index ABC(G), Sum connectivity index SCI(G), Symmetric
division degree index SDDI(G), Harmonic index HM(G), Quadratic-Geometric index QG (G),
Nirmala index N(G), Inverse Nirmala indices IN;(G), IN,(G), Sombor index SO(G) and its
variants. For recent studies on various topological indices and related work, we cite [21-42].
Topological indices are widely used in analyzing the physicochemical properties of chemical
compounds through QSPR and QSAR analysis, which are based on the numerical relationship
between chemical structures and their property values.

In 1948, Shannon [43] first proposed the concept of entropy, a measure of the
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distributions. In later studies, it was observed that chemical networks and graphs are analyzed
to understand structural information using entropy. The graph entropy measures, obtained
using topological indices, were found to be useful to assess the structural diversity of chemical
compounds. In particular, higher structural diversity was indicated by higher entropy values.
Particularly, degree-based entropy could be applied in various fields such as organic and
inorganic chemistry, chemical graph theory, biology, and mathematics. For related work, we
cite [44-51].

Based on a literature survey conducted in the domains of topological indices and graph
entropy, this article presents results providing closed formulae for the reduced reverse vertex
degree-based topological indices (TIs) and graph entropies (Es) of TCNB MOFs. Further, we
provide a graphical and comparative analysis of the computed TIs and Es to provide
significance to the obtained results.

2. Basic Definitions

Given a graph G, with its vertex set V(G) and edge set E(G), a reduced reverse vertex
degree-based topological index RRTI(G) [20] is generally defined as:

RRTI(G) = Suver(g) f(RR(W), RR(V)) ¥

where f(RR(u), RR(v)) is a real-valued function, with RR(u) and RR(v) being the
reduced reverse degrees of the verticesu and v in G.

Based on the definition of the reduced reverse vertex degree of a vertex, various reduced
reverse degree-based topological indices are defined by choosing a particular function
f(RR(u), RR(v)) as follows:

If f(RR(u),RR(V)) = RR(u) + RR(v), then TI(G) is the first reduced reverse
Zagreb index RRM;(G).

If f(RR(1),RR(V)) = RR(u) X RR(v), then TI(G) is the second reduced reverse
Zagreb index RRM, (G).

If f(RR(1),RR(V)) = RR(u) — RR(v), then TI(G) is the third reduced reverse
Zagreb index RRM;(G).

If f(RR(u), RR(V)) = (RR(u) + RR(v))?, then TI(G) is the first reduced reverse
hyper-Zagreb index RRH M, (G).

If f(RR(u), RR(V)) = (RR(u) x RR(v))?, then TI(G) is the second reduced reverse
hyper-Zagreb index RRHM,(G).

If f(RR(u),RR(V)) = RR(u)? + RR(v)?, then TI(G) is the reduced reverse
forgotten index RRF (G).

_ [RR(W)+RR(V)-2 . )
If f(RR(u),RR(V)) = /—m COXRR) then TI1(G) is the reduced reverse atom-bond
connectivity(ABC) index RRABC(G).

If fF(RR(u),RR(V)) = %, then TI(G) is the reduced reverse geometric-
arithmetic(GA) index RRGA(G).
If f(RR(W), RR(V)) = ZRW+RR(Y)

, then TI(G) is the first reduced reverse redefined
RRU)XRR(V)
Zagreb index RR[ReZ(G)].
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RR(W)XRR(V)
If f(RR(u), RR(V)) = m’

redefined Zagreb index RR[ReZ,(G)].

If f(RR(u),RR(V)) = (RR(1) X RR(V))(RR(u) + RR(Vv)), then TI(G) is the third
reduced reverse redefined Zagreb index RR[ReZ3(G)].

If f(RR(u),RR(V)) = RR()" X RR(V)* + RR(u)®* X RR(v)", then TI(G) is the
reduced reverse generalized Zagreb index RR[M, ;(G)].

then TI(G) is the second reduced reverse

3. Results and Discussion

The chemical structure of TCNB(p, q) consists of p > 1 horizontal and g > 1 vertical
expansions. For instance, the structure of TCNB(1,1) is depicted in Figure 1. In general, the
TCNB(p, q) graphical structure consists of 25p + 25q + 33pq + 17 vertices (atoms) and
32p + 32q + 44pq + 20 edges (bonds). Furthermore, it comprises vertices of four different
degrees, ranging from 1 to 4, and five edge partitions, as shown in Tables 1 and 2.

Figure 1. Molecular structure of TCNB(1,1).

Table 1. Vertex partition of TCNB (p, q).

d, RR(u) Frequency

1 5 2p+2q+4pq

2 4 8p +8q +4pqg+12
3 3 14p + 14q + 24pq + 4
4 2 p+q+pqg+1

Table 2. Edge partition of TCNB (p, q) based on degree and reduced reverse degree of end vertices.

(dy, dy) (RR(u),RR(V)) Frequency
(1,3) (5,3) 2p + 2q + 4pq
(2,3) (4,3) 8p +8q+8pg+8
(2,2) (4,4) 4p+49+8
(3,3) (3,3) 14p + 149 + 28pq
(3, 4) 3,2) 4p +4q + 4pq + 4

Using these vertex and edge partitions, we propose the following result, giving the
expression of any reduced reverse vertex degree-based topological index of TCNB (p, q). Using
the proposition, we obtain the closed forms of the expressions for various reverse vertex
degree-based topological indices in the latter part of the section.

Proposition 3.1 For G =TCNB(p,q), the reduced reverse vertex degree-based
topological index RRTI(G) is given by
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RRTI(TCNB(p,q)) = RRTI(G)

= (2p+2q +4pq)f(53) + (8p +8q + 8pq + 8) f(4,3)
+ (4p + 49 + 8)f(4,4) + (14p + 149 + 28pq)f(3,3)
+(4p +4q + 4pq + 4)f(3,2) 3)
Proposition 3.2 The reduced reverse Zagreb indices of G = TCNB(p, q) are:
* RRM,(G) = 208p + 208q + 276pq + 140 4)
« RRM,(G) = 340p + 340q + 432pq + 248 (5)
* RRM3(G) = 16p + 16q + 20pq + 12. (6)
Proof. By definition, the first reduced reverse Zagreb index of G is given by,
RRM;(G) = Z (RR(w) + RR(V))
uveEe(g)
=2p+2q+4pq)(5+3)+ (Bp+8q+8pqg+8)(4+3)
+ (4p+4q+8)(4+4) + (14p + 14q + 28pq)(3 + 3)
+ (4p +4q +4pq +4)(3+2)
= 208p + 208q + 276pq + 140 @)

The second reduced reverse Zagreb index of G is given by

RRMy(§) = ) (RR(W) X RR(V))
uveEe(g)
=2p+2q+4pq)(5%x3)+ (8p +8q+8pg+8)(4x3)

+ (4p +4q +8)(4 x4) + (14p + 14q + 28pq)(3 X 3) + (4p
+4q + 4pg +4)(3 X 2)
= 340p + 340q + 432pq + 248 (8)

The third reduced reverse Zagreb index of G is given by,
RRMy(G) = ) (RR(W) — RR(V)

uveEe(g)
=2p+29+4pq)(5—-3)+Bp+8q+8pq+8)(4—3)+ (4p +4q + 8)(4
— 4)
+(14p + 14q + 28pq)(3 —3) + (4p + 4q + 4pq + 4)(3 — 2)
= 16p + 16q + 20pqg + 12 9)

Proposition 3.3 The reduced reverse hyper-Zagreb indices of G = TCNB(p, q) are:

« RRHM, (G) = 1380p + 1380q + 1756pq + 1004 (10)
« RRHM,(G) = 3904p + 3904q + 4464pq + 3344 (11)

Proof. The first reduced reverse hyper-Zagreb index of G is given by,
RRHM, (G) = 2 (RR(u) + RR(V))?
uvek(g)
=2p+2q9+4pq)(5+3)>+ (8p +8q +8pq +8)(4+3)*+ (4p + 4q + 8)
(4+4)%+ (14p + 14q + 28pq) (3 + 3)? + (4p + 4q + 4pq + 4)(3 + 2)?
= 1380p + 1380q + 1756pq + 1004 (12)
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The second reduced reverse hyper-Zagreb index of G is given by
RRHMy(§) = D (G) =) x RR(V)Y?
uveke(q)
=2p+2q+4pq)(5%x3)*+ (8p+8q +8pq+8)(4x3)°>+ (4p+4q+8)
(4 x 4)% + (14p + 149 + 28pq) (3 X 3)? + (4p + 4q + 4pq + 4)(3 X 2)?
= 3904p + 3904q + 4464pq + 3344 (13)

Proposition 3.4 The reduced reverse forgotten index, atom-bond connectivity (ABC)
index, and geometric-arithmetic (GA) index of G = TCNB(p, q) are:

« RRF(G) = 700p + 700q + 892pq + 308 (14)
« RRABC(G) = 21.0408p + 21.0408q + 29.19pq + 12.89 (15)
« RRGA(G) = 31.7736p + 31.7736q + 43.7101pq + 19.8371  (16)

Proof. The reduced reverse forgotten index of G is given by
RRF(G) = Z (RR(W)? + RR(v)?)

uveE(§)
= (2p +2q + 4pq)(5%2 + 3%2) + (8p + 8q + 8pq + 8) (4% + 3%) + (4p + 4q + 8)
(42 + 4%) + (14p + 14q + 28pq) (3% + 3%) + (4p + 4q + 4pq + 4)(3? + 2?)
= 700p 4+ 700q + 892pq + 308 (17)

The reduced reverse ABC index of G is given by

) RR(u) + RR(V) — 2
RRABC(G) = uVEZE(Q) j RR(u) X RR(V)

5+3-2
=(2p +2q +4pq)< / s

4+4-2

+(4p + 4q + 8) ( — > + (14p + 14q + 28pq) < 3*“)

3X3

) + (8p + 8q + 8pq + 8) < 4+3_2>

4x3

3X2

+(4p + 4q + 4pq + 4) < 3*”)

= 21.0408p + 21.0408q + 29.19pq + 12.89 (18)

The reduced reverse GA index of G is given by

) 2,/RR(u) X RR(V)
RRGA(G) = uv;(g) ( RR(u) + RR(V) >

2v5x%x 3 2V4 X 3
=(2p+2q+4pq)< =13 )+(8p+8q+8pq+8)< 173 )

2V4 X 4 2v3 %3
+(4p+4q+8)< ) )+(14p+14q+28pq)< 373 >

2V3 X 2
3+2

+(4p + 4q + 4pq +4)<
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= 31.7736p + 31.7736q + 43.7101pq + 19.8371. (19)

Proposition 3.5 The reduced reverse redefined Zagreb indices of G = TCNB(p, q) are:
* RR[ReZ,(G)] = 20.40p + 20.40q + 28.80pq + 12,
« RR[ReZ,(G)] = 51.26p + 51.26q + 68.01pq + 34.51,
* RR[ReZ3(G)] = 2300p + 2300q + 2784pq + 1816.

Proof. The first reduced reverse redefined Zagreb index of G is given by,

B RR(u) + RR(V)
RR[ReZ1(G)] = Z (SQSQ(u) X RR(V))

uveE(§)

+3 +3
—(2p+2q+4pq)( )+(8p+8q+8pq+8)( >+(4p+4q

+ 4 +3
+8)< )+(14p+14q+28pq)( >+(4p+4q+4pq

3+2)

4 (3 X 2
= 20.40p + 20.40q + 28.80pq + 12. (20)

The second reduced reverse redefined Zagreb index of G is given by,

~ RR(u) X RR(V)
R[ReZ,(G)] = uv;:@ (:R:R(u) + RR(V))

5%x3 3
=(2p+2q+4pq)(5_|_3)+(8p+8q+8pq+8)<4 3>+(4)0+4q

X 4 X 3
8( ) 14p + 14q + 28 (—) 4p + 4q + 4
)4+4 + (14p + 14q + pq)3+3 + (4p + 4q + 4pq

+0(352)

= 51.26p + 51.26¢ + 68.01pq + 34.51. (21)

The third reduced reverse redefined Zagreb index of G is given by,
R[ReZ3(G)] = Z (RR(u) X RR(V))(RR(u) + RR(V))

uvek(g)
=2p+2q+4pq)(5%x3)(5+3)+ (8p+8qg+8pg+8)(4x3)(4+3)
+(4p +4q+8)(4 x4)(4+4) + (14p + 14q + 28pq)(3 x 3)(3 + 3)
+(4p +4q +4pq +4)(3x2)(3+2)
= 2300p + 2300qg + 2784pq + 1816. (22)

Proposition 3.6 The reduced reverse generalized Zagreb index of G = TCNB(p, q) is

RR[M, ()] = 2p + 2q + 4pq) (5" x 3° + 55 x 3") + (8p + 8q + 8pq +
8)(4" x3°+45x 3"+ (8p + 8q + 16)(4") + (28p + 28q + 56pq)(3"+5) + (4p +
4q + 4pq + 4)(3" x 25 + 35 x 27). (23)
Proof. The reduced reverse generalized Zagreb index of G is given by
RR[M,5(G)] = Z (RR(W)" X RR(V)® + RR(u)® X RR(vV)")
uveEe(g)
=2p+2q+4pq)(5" x35+5°%x3")+ (8p+8gq+8pqg +8)(4" x3°+
SX37) + (4p + 4q + 8)((4" X 45) + (45 X 47)) + (14p + 14q +
28pq) (B"x3)+(3°%x3")+Up+4q+4pqg +4)(3" x2°+35x2")
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=2p+2q+4pq)(5" x3°+5°x3")+ (8p+8q +8pqg+8)(4" x3°+
45 x 3") 4+ (8p +8q + 16)(4"*%) + (28p + 28q + 56pq)(3"*%) +
(4p +4q +4pq +4)(3" x 2° +3° x 2"). (24)

Tables 3 and 4 provide the values of the topological indices discussed in the above
propositions for specific values of p and q with p = q = 1, 2, ..., 20. Further, Figure 2 gives
the graphical interpretation of the indices for these values of p and gq.

Table 3. Numerical behaviour of topological indices of G = TCNB (p, q) for some specific values of p and g

withp = gq.
@9 RRM4(G) RRM,(G) RRM3(G) | RRHM,(G) | RRHM,(G) RRF(G)
(1,1 832 1360 64 5520 15616 2600
(2,2) 2076 3336 156 13548 36816 6676
(3,3 3872 6176 288 25088 66944 12536
4,9 6220 9880 460 40140 106000 20180
(5,5) 9120 14448 672 58704 153984 29608
(6, 6) 12572 19880 924 80780 210896 40820
7,7 16576 26176 1216 106368 276736 53816
(8, 8) 21132 33336 1548 135468 351504 68596
9,9 26240 41360 1920 168080 435200 85160
(10, 10) 31900 50248 2332 204204 527824 103508
(11, 11) 38112 60000 2784 243840 629376 123640
(12,12) 44876 70616 3276 286988 739856 145556
(13,13) 52192 82096 3808 333648 859264 169256
(14, 14) 60060 94440 4380 383820 987600 194740
(15, 15) 68480 107648 4992 437504 1124864 222008
(16, 16) 77452 121720 5644 494700 1271056 251060
(17,17) 86976 136656 6336 555408 1426176 281896
(18, 18) 97052 152456 7068 619628 1590224 314516
(19, 19) 107680 169120 7840 687360 1763200 348920
(20, 20) 118860 186648 8652 758604 1945104 385108

Table 4. Numerical behaviour of topological indices of G = TCNB (p, q) for some specific values of p and q

withp = q.
@®.9 RRABC(G) RRGA(G) RR(ReZ1(G)) | RR(ReZz(G)) | RR(ReZ3(G))
(1,1 84.1616 127.0945 81.6 205.04 9200
(2,2 213.8132 321.7721 208.8 511.59 22152
(3,3 401.8448 603.8699 393.6 954.16 40672
(4,4 648.2564 973.3879 636 1532.75 64760
(5,5) 953.0480 1430.3262 936 2247.36 94416
(6, 6) 1316.2196 1974.6847 1293.6 3097.99 129640
7,7 1737.7712 2606.4634 1708.8 4084.64 170432
(8,8) 2217.7028 3325.6623 2181.6 5207.31 216792
9,9 2756.0144 4132.2815 2712 6466 268720
(10, 10) 3352.7060 5026.3209 3300 7860.71 326216
(11, 11) 4007.7776 6007.7805 3945.6 9391.44 389280
(12,12) 4721.2292 7076.6604 4648.8 11058.19 457912
(13,13) 5493.0608 8232.9605 5409.6 12860.96 532112
(14,14) 6323.2724 9476.6808 6228 14799.75 611880
(15, 15) 7211.8640 10807.8213 7104 16874.56 697216
(16, 16) 8158.8356 12226.3821 8037.6 19085.39 788120
(17,17) 9164.1872 13732.3631 9028.8 21432.24 884592
(18, 18) 10227.9188 15325.7643 10077.6 23915.11 986632
(19,19 11350.0304 17006.5857 11184 26534 1094240
(20, 20) 12530.5220 18774.8274 12348 29288.91 1207416
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=]
~
=]

—— RRM,(G)

—— RRHM,(G)
~o— RRHM,(G)

o

x10000
=
®

x 100000
[

—o— RRM(G)
RRM, (G)

Reduced reverse Zagreb indices Reduced reverse hyper-Zagreb indices

—o— RRF(G)
—4— RRGA(G)

o
=3
g —— RRIRZ,(G)]
®
25 —— RR[ReZ,(G)]

Reduced reverse redefined first and second
Zagreb indices

—o— RRABC(G)
—— RR[ReZ,(G)]

Reduced reverse ABC and the redefined third Zagreb indices
Figure 2. Graphical representation of reduced reverse degree-based topological indices of G =
TCNB(p, q) for some specific values of p and g with p = q.

4. Graph Entropy

Definition 4.1 [52] Let G = (V,E) be a connected graph of order n and ¢ be an
arbitrary function defined on the vertex set V = {v,, v,, -+, v, } of G. Then the entropy of G is
defined as

e = -y P (nqs(vi) )

Z 1 9(v 1) ¢(vi))

As defined in [53], the entropy of the edge-weighted graph G = (V, E)), with the edge
weight of the edge v;v; being w(v;v;), is given by
w(Vivj) )

Yvivier @ (Vivj)

]E(Q)=—z (Vi) log(

2 Zvier @(Vivy)
7]

= )Z w (Vivj) log(w(vlvl)) log Z w(Vivj)

W(VjV;
ZVV] E ( 1Y) VivjEE ViviEE
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so that

E(G) = log Z a)(vivj) ! Z (w(vivj)log (w(vivj))>.

ViVjEE ZViVjEE (U(ViV]') ViVjEE

Replacing ZvivjEE w(viv;) with T1(G), we get the required degree-based entropy of G

as
_r

o LvivieE (w (vivplog(w (ViVj)))- (25)

E(G) = log(TI(9)) -

Reduced reverse degree-based entropy of tetracyanobenzene MOFs.
For G = TCNB(p,q), the reduced reverse vertex degree-based entropy Erzr(g) IS

given by
Egricg) = L0g(RRTI(G)) = s Zuver() [f (RR(W), RR(V)) X
log(f (RR(w), RR(W))] ~ (26)

4.1. First reduced reverse Zagreb entropy.

If f(RR(u), RR(V)) = RR(u) + RR(vV) and RRM,(G) = 208p + 208q + 276pq +
140, then the first reduced reverse Zagreb entropy is

Ezzm, ) = log(RRM,(G))
1

" RRM;(G) Z [(RR(w) + RR(V)) X log(RR(w) + RR(V))]

uveE(§)
= 10g(RRM,(G)) — ——— [(2p + 2q + 4pq) X 8 x log8 + (8p +
RRM1(G)
8q +8pq +8) X7 xlog7 + (4p +4q + 8) X8 X log8 + (14p + 14q + 28pq) X 6 X
log6 + (4p + 4q + 4pq + 4) X 5 X log5]. (27)

4.2. Second reduced reverse Zagreb entropy.

If f(RR(1), RR(V)) = RR(u) X RR(V) and RRM,(G) = 340p + 340q + 432pq +
248, then the second reduced reverse Zagreb entropy is
Ezzm, ) = log(RRM,(G))

o 2
- [RR(u) X RR(V) X log(RR(u) X RR(v))]
RRLE) (W) X RR(V) X log(RR(w) X RR(V))
uveE(§)
= log(RRM,(G)) — m [(2p + 2q + 4pq) X 15 X log15 + (8p + 8q +
2

8pq + 8) X 12 x logl12 + (4p + 4q + 8) X 16 X log16 + (14p + 14q +

28pq) X 9 X log9 + (4p + 4q + 4pq + 4) X 6 X log6]. (28)

4.3. First reduced reverse hyper Zagreb entropy.

If f(RR(u),RR(V)) = (RR(u) + RR(v))? and RRHM,(G) = 1380p + 1380q +
1756pq + 1004, then the first reduced reverse hyper Zagreb entropy is

Errum, ) = log(RRHM;(G))
1

- S D[RR + RR(W)? X log (RR(W) + RR())

uveE(g)
https://biointerfaceresearch.com/ 10 of 21
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1
= log(RRHM,(G)) — RRAND) [(2p + 2q + 4pq) X 64 X log64 + (8p + 8q +
8pq + 8) X 49 X log49 + (4p + 4q + 8) X 64 X log64 + (14p + 14q +

28pq) X 36 X log36 + (4p + 4q + 4pq + 4) x 25 X log25]. (29)
4.4. Second reduced reverse hyper Zagreb entropy.

If f(RR(1),RR(V)) = (RR(u) X RR(v))? and RRHM,(G) = 3904p + 3904q +
4464pq + 3344, then the second reduced reverse hyper Zagreb entropy is
Errum, ) = log(RRHM,(G))

_ m Z [(RR() X RR(V))? X log(RR(u) X RR(V))?]
uveEe(G)
= log(RRHM,(G)) — m [(2p + 2q + 4pq) X 225 X l0g225 + (8p +
8q +8pq + 8) X 144 X log144 + (4p + 4q + 8) X 256 X log256 +
(14p + 14q + 28pq) x 81 X log81 + (4p + 4q + 4pq + 4) X 36 X
log36]. (30)

4.5. Reduced reverse forgotten entropy.

If  f(RR),RR(V)) = RR(W)? +RR(V)? and RRF(G) = 700p + 700q +
892pq + 308, then the reduced reverse forgotten entropy is
Ezzrg) = log(RRF(G))

1
- 2 2 X 2 2
RRF ) z [(RR(W)* + RR(V)?) X log(RR(u)* + RR(V))]
uveE(§)
= log(RRF(G)) — m [(2p + 2q + 4pq) X 34 X log34 + (8p + 8q +
8pq + 8) X 25 X log25 + (4p + 4q +8) x 32 X log32 + (14p +
14q + 28pq) X 18 X log18 + (4p + 4q + 4pq + 4) x 13 X log13].

31)
4.6. Reduced reverse atom-bond connectivity (ABC) entropy.

_ RR(W)+RR(V)—-2 _
If f(RR(u),RR(V)) = /—m(u)xm(v) and RRABC(G) = 21.0408p + 21.0408q +
29.19pq + 12.89, then the reduced reverse atom-bond connectivity (ABC) entropy is

Errapcg) = log(RRABC(G))

1
"~ RRABC(G) Z

uveEe(g)

] RR(u) + RR(v) — 2
X Lo RR(W) X RR(V)

RR(u) + RR(v) — 2
RR(u) X RR(V)

= log(RRABC(G)) — RRA;C(Q) [(2p + 2q + 4pq) % \E X log <\/§>

’5 5 3 3
+(8p + 8q + 8pq + 8) X Exlog 1z +(4p+4q+8)x\/;xlog \/;
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+(14p+14q+28pq)><\/%xlog(\[%>+(4p+4q+4pq+4)x\/%x

log <£>] (32)

4.7. Reduced reverse geometric-arithmetic (GA) entropy.

If f(RR(u), RR(V)) = % and RRGA(G) = 31.7736p + 31.7736q +

43.7101pq + 19.8371, then the reduced reverse geometric-arithmetic (GA) entropy is
Errcacg) = log (RRGA(Q))

2,/RR (1) X RR(V) l 2,/RR(u) X RR(V)
RRGA(Q) Z K RR(W) + RR(V) )X °9 < RR(W) + RR(V) )l

[(2p + 2q + 4pq) X E X log (E)

= log(RRGA(G)) — ch(Q)

+(8p+8q+8pq+8)x%gxlog(4\/—)+(4p+4q+4pq+4)xix

log (20). @393

4.8. Reduced reverse redefined first Zagreb entropy.

If  f(RR(),RR(V)) = % and  RR[ReZ,(G)] = 20.40p + 20.40q +

28.80pq + 12, then the reduced reverse redefined first Zagreb entropy is
Errirez, (5] = l0g(RR[ReZ1(G)])

~wmnn, 2 |mrermee) o9 (wmaymee)

= log(RRIReZy(§)]) = zmmazoes; [(2P + 20 + 4pq) X 1= X log ()

+(8p+8q+8pq+8)x—xlog( )+(4p+4q+8)>< xlog()

+(14p + 14q + 28pq) x > x log (2) + (4p + 49 + 4pq + 4) x 2 x
5
log(3)1. (34

4.9. Reduced reverse redefined second Zagreb entropy.

RR(W)XRR(V)
It fRRW,RR(W)) = 2g oom s

68.01pq + 34.51, then the reduced reverse redefined second Zagreb entropy is
Err[rez,(6)] = log(RR[ReZz(g)])

RR(u) X RR(v) RR(u) X RR(Vv)
ReZz RR[ReZ,()] Z [(RR(u) n RR(V)) x log (RR(u) n RR(V))]
= log(RR[ReZ, (9)]) e [P + 20 + 4pq) x 3 x log (%)

+(8p+8q+8pq+8)><—><log( )+(4p+4q+8)><2><l092

and RR[ReZ,(G)] = 51.26p + 51.26q +
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+(14p + 14q + 28pq) X = Xlog( )+(4p+4q+4pq+4)x X
6
log (E)]' (35)

4.10. Reduced reverse redefined third Zagreb entropy.

If f(RR(1),RR(V)) = (RR(u) + RR(V))(RR(u) X RR(v)) and RR[ReZ5(G§)] =
2300p + 2300q + 2784pq + 1816, then the reduced reverse redefined third Zagreb entropy
IS
Errirezs(g)) = l0g(RR[ReZ3(G)]) — RRIReZ2(O)] X [((RR(u) + RR(V))

3 uveE(g)
(RR(u) X RR(V)) X log((RR(u) + RR(V))(RR(u) X RR(v)))]

= log(RR[ReZ5(§)]) — RR[TZ(Q) [(2p + 2q + 4pq) x 120 x log120
+(8p +8q +8pqg +8) X84 X 1log84 + (4p + 4q + 8) X 128 X log128
+(14p + 14q + 28pq) X 54 X log54 + (4p + 4q + 4pq + 4) X 30 X log30].
(36)

4.11. Reduced reverse generalized Zagreb entropy.

If f(RR(u), RR(V)) = RR(u)" X RR(V)® + RR(u)®* X RR(v)" and
RR[M,s(§)] = 2p + 2q + 4pq) (5" x 35 + 55 x 37) + (8p + 8¢ + 8pq + 8) (4" x 3°
+4°x3")+ (8p + 8q + 16)(4"*°) + (28p + 28q + 56pq)(3"*)
+(4p +4q +4pq +4)(3" x 25+ 3° x 27),
then the reduced reverse generalized Zagreb entropy is
Ex[u, s(q)] = L0g(RR[M,s(@]) — mzuvem [(RR(W)" X RR(V)?
+RR(u)S X RR(V)" ) X log(RR(u)" X RR(V)® + RR(u)* X RR(V)")]
= log(RR[M, (D)) — m [(2p + 2q + 4pq) X (57 X 3° + 55 x 37)
X log(5" X 35455 x 3") + (8p + 8q + 8pg + 8) X (4" x 35 + 45 x 3")
X log(4" x 35 +4°x3") 4+ (8p +8q + 16) X (4™") x log(2 x 47*%)
+(28p + 28q + 56pq) x (3"*5) x log(2 x 3"*5) + (4p + 4q + 4pq + 4)
X (3" x 254+ 3°x2") xlog(3" x 25+ 3% x 2")]. (37)

Tables 5 and 6 provide the values of the entropy measures discussed above for specific values
of pand g withp = g = 1, 2, ..., 20. Further, Figure 3 gives the graphical interpretation of the
entropies for these values of p and q.

Table 5. Numerical behaviour of entropy measures of G = TCNB(p, q) for some specific values of p and g with

p=4q.
(X)) Erzm, (§) Erzrm, ) ErruM,(G) Errum, g Erzrg)
(1,1 4.8417 4.812 4.8114 4.7021 4.4957
(2,2) 5.7716 5.7457 5.744 5.6439 5.7801
(3,3 6.4016 6.3776 6.3754 6.281 6.3078
(4,4 6.8793 6.8565 6.854 6.7633 6.8108
(5,5) 7.2644 7.2423 7.2396 7.1515 7.2091
(6, 6) 7.587 7.5655 7.5627 7.4765 7.5396
7,7 7.8647 7.8436 7.8407 7.7559 7.8223
(8, 8) 8.1085 8.0876 8.0847 8.001 8.0695
9,9 8.3257 8.3051 8.3021 8.2193 8.2891
(10, 10) 8.5216 8.5012 8.4981 8.4162 8.4869
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(X)) Erzm, (G) Erru, () Errum, (g Errum, G Errr(g)
(11, 11) 8.7 8.6798 8.6767 8.5953 8.6666
(12,12) 8.8638 8.8437 8.8406 8.7597 8.8315
(13,13) 9.0152 8.9952 8.992 8.9117 8.9837
(14, 14) 9.1559 9.136 9.1328 9.0529 9.1251
(15, 15) 9.2873 9.2676 9.2644 9.1848 9.2571
(16, 16) 9.4107 9.391 9.3878 9.3085 9.3809
(17,17) 9.5269 9.5073 9.504 9.425 9.4975
(18, 18) 9.6367 9.6171 9.6139 9.5351 9.6076
(19,19) 9.7407 9.7213 9.718 9.6394 9.712
(20, 20) 9.8397 9.8202 9.817 9.7386 9.8112

Table 6. Numerical behaviour of entropy measures of G = TCNB(p, q) for some specific values of p and q

withp =g.
(X)) ErraBC(g) Errcag) ERrR[Rez;(§)] Exrz[Rez,(5)] Err[Rezs(6)]
(1,1) 4.8513 4.4744 4.8413 4.8417 4.7641
2,2 5.7801 5.4452 5.7719 5.772 5.7012
3,3) 6.4096 6.0923 6.4021 6.4022 6.3353
(4,4) 6.8871 6.5794 6.8799 6.8801 6.8155
(5,5) 7.2719 6.9704 7.2651 7.2652 7.2022
(6, 6) 7.5944 7.2972 7.5878 7.5879 7.5261
7,7 7.872 7.5778 7.8655 7.8656 7.8047
(8,8) 8.1157 7.8239 8.1093 8.1094 8.0491
(9,9 8.3329 8.0429 8.3265 8.3267 8.2669
(10, 10) 8.5287 8.2403 8.5224 8.5226 8.4633
(11, 11) 8.7071 8.4199 8.7008 8.701 8.6421
(12,12) 8.8708 8.5847 8.8646 8.8648 8.8062
(13,13) 9.0222 8.7369 9.016 9.0162 8.9579
(14, 14) 9.1629 8.8784 9.1567 9.1569 9.0989
(15, 15) 9.2943 9.0105 9.2882 9.2884 9.2305
(16, 16) 9.4176 9.1344 9.4116 9.4117 9.3541
(17,17) 9.5338 9.2511 9.5277 9.5279 9.4704
(18, 18) 9.6436 9.3613 9.6375 9.6377 9.5804
(19, 19) 9.7476 9.4658 9.7416 9.7418 9.6846
(20, 20) 9.8465 9.5651 9.8406 9.8407 9.7836
10 + 10 4
9 9
= <]
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9 |
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Figure 3. Graphical representation of reduced reverse degree-based entropy of G = TCNB(p, q).

5. Regression Analysis

Regression is a statistical technique that examines the relationship between the
dependent variable, also known as the response variable, and the independent variable, also
referred to as the predictor variable. In this study, we use a logarithmic regression model to
examine the relationship between the various reduced reverse topological indices (TIs) and
their corresponding entropy measures (Es) of TCNB(p,q) for 1 < p,q < 20. The most
general form of a logarithmic regression model is

y=aXlIn(x)+b,

where y is the dependent variable, x is the independent variable, In is the natural
logarithm, a is the regression coefficient, and b is the regression constant. In this context, we
consider the dependent variable as an entropy measure and the independent variable as a
topological index. The analysis includes statistical measures such as the squared correlation
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coefficient (R?), the sum of square error (SSE), root mean squared error (RMSE), F-Value,

and Significance F.

Table 7. Statistical measures of reduced reverse topological indices vs. entropy measures of G = TCNB(p, q).

Data Model R® | SSE RMSE F Sig.F.
RRM;(G) Vs. Exgumygy | ¥ = 1.0059 X In(x) —1.9111 | 1 | 0.000218 | 0.003481 | 3088693 | 1.44x10*
RRM,(G) Vs. Exgumyg) | ¥ = 1.0142 X In(x) —2.4813 | 1 | 0.001218 | 0.008226 | 554889 | 7.37x10%

RRHM, (G) Vs. Ergum, gy | ¥ = 1.0136 x In(x) —3.8981 | 1 | 0.001106 | 0.007840 | 610343 | 3.13x1042
RRHM,(G) Vs. Exgumyg) | ¥ = 1.0361 x In(x) —5.2457 | 1 | 0.000373 | 0.019305 | 101788 | 3.13x10%
RRFE(G) vs. Errr(g) y = 1.0445 x In(x) —3.5889 | 1 | 0.030014 | 0.040834 | 24386 1.2x 102
RRABC(G) Vs. Expapcg) | ¥ = 0.9868 X In(x) +0.9289 | 1 | 0.00325 | 0.13437 | 207855.6 | 5.08x103
RRGA(G) Vs. Exrgacq) | ¥ = 1.0153 x In(x) — 04164 | 1 | 0.001567 | 0.00933 | 442689.3 | 5.63x10*
‘miE[ReZl(g)] Ve y =0.9968 x In(x) + 0.4476 | 1 | 0.000071 | 0.001991 | 9439104 | 6.19x10%
RR[ReZ; ()]
R?E[RQZZ(Q)] Vs y = 1.0060 x In(x) — 0.5029 | 1 | 0.000233 | 0.003507 | 2892583 | 2.59x10+
RR[ReZ, ()]
R?E[RQZS(Q)] Vs y=1.0238 x In(x) — 45410 | 1 | 0.003811 | 0.013203 | 213361.1 | 4.01x10%
RR[ReZ3(G)]
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Figure 4. Comparison of the reduced reverse topological indices and their corresponding entropy measures of
G =TCNB(p,q).

The logarithmic regression curve fitting statistical values of the earlier discussed
reduced reverse topological indices versus corresponding entropy measures for the
TCNB(p, q) are shown in Table 7.

6. Numerical and Graphical Discussion

In this section, we have made a comprehensive analysis of various reduced reverse
vertex degree-based topological indices and their corresponding entropies of the
Tetracyanobenzene metal organic framework TCNB(p,q). Based on the regression analysis
carried out in the previous section, with reference to the values of the aforesaid indices for
different values of p and q are tabulated in Tables 3 and 4, while the corresponding entropy
values are tabulated in Tables 5 and 6.

An increase in the values of p and g ensures a corresponding increase in each of the
discussed indices and entropies. This trend is observed in the graphs in Figures 2 and 3.
Consistent trends are observed between the considered sets of indices and entropies. Of all the
indices, the reduced reverse atom-bond connectivity index RRM;(G) takes the least value,
whereas the second reduced reverse hyper-Zagreb index RRHM,(G) takes the greatest value.
Similarly, of all the entropy measures, the reduced reverse geometric-arithmetic entropy
Exrzrca(g) takes the least value, whereas the reduced reverse atom-bond connectivity entropy
Exrgrapc(g) takes the greatest value. Unfortunately, it is not possible to determine the entropy
value for the third reduced reverse Zagreb index due to encountering an undefined value log 0
when the adjacent vertices have the same degree. Further, we made the comparison of
topological indices with their entropy measures by a logarithmic regression model, which is
shown in Table 7. In each regression model, the value of R? is identically equal to 1, and the
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values of SSE and RMSE are very low. Additionally, the values of F are found to be very large,
and the significance F-values are quite small. These results indicate a strong correlation
between the discussed indices and their corresponding entropies, suggesting that the
differences in group means are substantially greater than the variability within each group.
Consequently, the observed differences are unlikely to be due to chance alone.

7. Conclusion

In this article, we derive the expressions for the closed forms of various reduced reverse
vertex degree-based topological indices and the corresponding entropy measures of the
Tetracyanobenzene metal-organic frameworks. Further, we have made a graphical and
comparative analysis of these indices and the entropy measures by computing them for
different values of p and g. The analysis of the existing relationships between these indices, as
well as entropy measures and the topological properties of the structure, is conducted using a
logarithmic regression model. Based on the analysis, it is concluded that these indices and
entropy measures are significantly correlated.

8. Future Work

As seen in literature, topological indices are found to have strong correlation with many
of the structural, physical, and chemical properties of MOFs. They play a significant role in
understanding how the MOF structures influence their properties. For example, Zagreb indices
are seen to correlate with the stability of MOFs. Similarly, the Wiener index is useful in
predicting the porosity of these structures.

Taking this direction, further computational research may shed light on the significance
of the topological indices discussed in this study in predicting the physicochemical properties
of broader classes of MOFs by incorporating real-world chemical data for validation.
Integrating these indices with machine learning could ensure improved computational
efficiency, especially when dealing with large-scale datasets.
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