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Abstract: Modern material research relies heavily on metal-organic frameworks (MOFs), which are 

known for their highly porous and structurally tunable architectures, as well as their significance in drug 

delivery, gas storage, and catalysis. Topological indices (𝑇𝐼𝑠) are numerical parameters that are graph 

invariant and describe the topology of a graph. In quantitative structure-property relationship (QSPR) 

and quantitative structure-activity relationship (QSAR) analysis, these topological indices and entropy 

measures (𝔼𝑠), obtained using these topological indices, help in predicting the physicochemical 

properties of compounds. In this study, we derive closed formulae for several reduced reverse (ℛℛ) 

degree-based topological indices and their corresponding entropy measures of the Tetracyanobenzene 

(𝑇𝐶𝑁𝐵) metal-organic framework 𝑇𝐶𝑁𝐵(𝑝, 𝑞). In order to prove the essential significance and validate 

the obtained results, we additionally perform a graphical and comparative analysis between these 

indices for various values of 𝑝 and 𝑞. 

Keywords: tetracyanobenzene metal-organic framework; topological indices; graph entropies; 

reduced reverse degree-based topological indices; reduced reverse degree-based entropies. 
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1. Introduction 

Metal-organic frameworks, or MOFs, form a novel class of hybrid crystal materials that 

are porous in nature and composed of metal ions and organic linkers. MOFs have garnered 

interest from various researchers due to their unique properties and diverse applications [1-3]. 

Due to their strong biodegradability and biocompatibility, MOFs are also considered viable 

options for constructing biosensors.  

MOFs have various applications, including gas storage, adsorption, and separation, due 

to their porous nature and large surface area. Their clearly defined structure provides specific 

chemical reaction conditions, which can enhance the selectivity and effectiveness of catalyst 

creation [4]. They are also studied for their application in medication delivery. They can 
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encapsulate pharmaceuticals due to their porous nature, which enables targeted distribution and 

controlled drug release [5, 6]. Additionally, MOFs have a wide range of uses in detection and 

sensing. Their ability to modify their systems in response to specific compounds makes them 

useful for identifying contaminants, pollution, and even disease biomarkers. MOFs are being 

researched for electrochemical power applications in supercapacitors and batteries. Their 

design may enhance the capacity and efficiency of the power storage devices [7].  

Tetracyanobenzene, or 𝑇𝐶𝑁𝐵, is a highly conjugated, electron-deficient aromatic 

compound widely recognized for its multifunctional properties and applications in advanced 

materials. MOFs incorporating 𝑇𝐶𝑁𝐵 are synthesized by reacting 𝑇𝐶𝑁𝐵 with a metal salt in a 

solvent, where the metal ions form an interconnected network by coordinating with the cyano 

groups of the 𝑇𝐶𝑁𝐵 molecules. Such MOFs are characterized by electrical conductivity, high 

porosity, and thermal stability, thereby contributing to a wide range of applications. 

Additionally, in material science, 𝑇𝐶𝑁𝐵 plays a key role as a linker molecule in the 

construction of MOFs. Due to its strong electron-accepting ability and multiple coordination 

sites, 𝑇𝐶𝑁𝐵 is capable of linking metal centers to form extended crystalline frameworks. These 

frameworks exhibit potential for applications in gas storage, molecular recognition, catalysis, 

and optical materials. Further, 𝑇𝐶𝑁𝐵 is well-known for forming charge-transfer complexes 

with electron donors, enabling the design of conductive materials, organic semiconductors, and 

nonlinear optical systems. Moreover, in chemical graph theory, 𝑇𝐶𝑁𝐵 provides ideal case 

studies due to their symmetry and substituent patterns.  For related work on MOFs and their 

applications, we cite [8-18].   

A graph 𝒢 = (𝑉, 𝐸) is a discrete structure, with the vertex set 𝑉 and the edge set 𝐸, with 

every element uv ∈ 𝐸 representing an edge between the vertices u, v ∈ 𝑉. The degree 𝑑u of a 

vertex u ∈ 𝑉 is defined as the number of vertices adjacent to it in 𝒢. As defined in [19], the 

reverse vertex degree ℛ(u) of a vertex u ∈ 𝑉 is defined as ℛ(u) = Δ(𝒢) − 𝑑u + 1, where Δ(𝒢) 

is the maximum degree of any vertex in 𝒢. Further, the reduced reverse vertex degree of u [20], 

denoted ℛℛ(u), is defined as: 

ℛℛ(u) = Δ(𝒢) − 𝑑u + 2             (1) 

 

The topological properties of a complex chemical or molecular structure can be 

analyzed effectively by representing the structure as a graph, where atoms are represented by 

vertices and the connections between them are represented by edges. Topological indices 

(𝑇𝐼𝑠), or molecular descriptors, are graph invariants, used to assess the various physico-

chemical properties of the respective chemical compounds by means of the structural properties 

of the underlying graphs. These indices depend on various aspects of the graph, including 

vertex degree, distance, and graph spectrum. Some of the commonly studied 𝑇𝐼𝑠 in literature 

are the Wiener index 𝑊(𝒢), Hosoya index 𝑍(𝒢), Zagreb indices 𝑀1(𝒢), 𝑀2(𝒢), Randi𝑐́ index 

𝑅(𝒢), Atom-bond connectivity index 𝐴𝐵𝐶(𝒢), Sum connectivity index 𝑆𝐶𝐼(𝒢), Symmetric 

division degree index 𝑆𝐷𝐷𝐼(𝒢), Harmonic index 𝐻𝑀(𝒢), Quadratic-Geometric index 𝑄𝐺(𝒢), 

Nirmala index 𝑁(𝒢), Inverse Nirmala indices 𝐼𝑁1(𝒢), 𝐼𝑁2(𝒢), Sombor index 𝑆𝑂(𝒢) and its 

variants. For recent studies on various topological indices and related work, we cite [21-42]. 

Topological indices are widely used in analyzing the physicochemical properties of chemical 

compounds through QSPR and QSAR analysis, which are based on the numerical relationship 

between chemical structures and their property values. 

In 1948, Shannon [43] first proposed the concept of entropy, a measure of the 

uncertainty or unpredictability of the information contained in a system based on probability 
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distributions. In later studies, it was observed that chemical networks and graphs are analyzed 

to understand structural information using entropy. The graph entropy measures, obtained 

using topological indices, were found to be useful to assess the structural diversity of chemical 

compounds. In particular, higher structural diversity was indicated by higher entropy values. 

Particularly, degree-based entropy could be applied in various fields such as organic and 

inorganic chemistry, chemical graph theory, biology, and mathematics. For related work, we 

cite [44-51].  

Based on a literature survey conducted in the domains of topological indices and graph 

entropy, this article presents results providing closed formulae for the reduced reverse vertex 

degree-based topological indices (𝑇𝐼𝑠) and graph entropies (𝔼𝑠) of 𝑇𝐶𝑁𝐵 MOFs. Further, we 

provide a graphical and comparative analysis of the computed 𝑇𝐼𝑠 and 𝔼𝑠 to provide 

significance to the obtained results.  

2. Basic Definitions 

Given a graph 𝒢, with its vertex set 𝑉(𝒢) and edge set 𝐸(𝒢), a reduced reverse vertex 

degree-based topological index ℛℛ𝑇𝐼(𝒢) [20] is generally defined as:  

 

ℛℛ𝑇𝐼(𝒢) = ∑uv∈𝐸(𝒢) 𝑓(ℛℛ(u), ℛℛ(v))                          (2) 

 

where 𝑓(ℛℛ(u), ℛℛ(v)) is a real-valued function, with ℛℛ(u) and ℛℛ(v) being the 

reduced reverse degrees of the vertices u and v in 𝒢.  

Based on the definition of the reduced reverse vertex degree of a vertex, various reduced 

reverse degree-based topological indices are defined by choosing a particular function 

𝑓(ℛℛ(u), ℛℛ(v)) as follows:   

If 𝑓(ℛℛ(u), ℛℛ(v)) = ℛℛ(u) + ℛℛ(v), then 𝑇𝐼(𝒢) is the first reduced reverse 

Zagreb index ℛℛ𝑀1(𝒢).  

If 𝑓(ℛℛ(u), ℛℛ(v)) = ℛℛ(u) × ℛℛ(v), then 𝑇𝐼(𝒢) is the second reduced reverse 

Zagreb index ℛℛ𝑀2(𝒢).  

If 𝑓(ℛℛ(u), ℛℛ(v)) = ℛℛ(u) − ℛℛ(v), then 𝑇𝐼(𝒢) is the third reduced reverse 

Zagreb index ℛℛ𝑀3(𝒢).  

If 𝑓(ℛℛ(u), ℛℛ(v)) = (ℛℛ(u) + ℛℛ(v))2, then 𝑇𝐼(𝒢) is the first reduced reverse 

hyper-Zagreb index ℛℛ𝐻𝑀1(𝒢).  

If 𝑓(ℛℛ(u), ℛℛ(v)) = (ℛℛ(u) × ℛℛ(v))2, then 𝑇𝐼(𝒢) is the second reduced reverse 

hyper-Zagreb index ℛℛ𝐻𝑀2(𝒢).  

If 𝑓(ℛℛ(u), ℛℛ(v)) = ℛℛ(u)2 + ℛℛ(v)2, then 𝑇𝐼(𝒢) is the reduced reverse 

forgotten index ℛℛ𝐹(𝒢).  

If 𝑓(ℛℛ(u), ℛℛ(v)) = √
ℛℛ(u)+ℛℛ(v)−2

ℛℛ(u)×ℛℛ(v)
, then 𝑇𝐼(𝒢) is the reduced reverse atom-bond 

connectivity(ABC) index ℛℛ𝐴𝐵𝐶(𝒢).  

If 𝑓(ℛℛ(u), ℛℛ(v)) =
2√ℛℛ(u)×ℛℛ(v)

ℛℛ(u)+ℛℛ(v)
, then 𝑇𝐼(𝒢) is the reduced reverse geometric-

arithmetic(GA) index ℛℛ𝐺𝐴(𝒢).  

If 𝑓(ℛℛ(u), ℛℛ(v)) =
ℛℛ(u)+ℛℛ(v)

ℛℛ(u)×ℛℛ(v)
, then 𝑇𝐼(𝒢) is the first reduced reverse redefined 

Zagreb index ℛℛ[𝑅𝑒𝑍1(𝒢)].  
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If 𝑓(ℛℛ(u), ℛℛ(v)) =
ℛℛ(u)×ℛℛ(v)

ℛℛ(u)+ℛℛ(v)
, then 𝑇𝐼(𝒢) is the second reduced reverse 

redefined Zagreb index ℛℛ[𝑅𝑒𝑍2(𝒢)].  

If 𝑓(ℛℛ(u), ℛℛ(v)) = (ℛℛ(u) × ℛℛ(v))(ℛℛ(u) + ℛℛ(v)), then 𝑇𝐼(𝒢) is the third 

reduced reverse redefined Zagreb index ℛℛ[𝑅𝑒𝑍3(𝒢)].  

If 𝑓(ℛℛ(u), ℛℛ(v)) = ℛℛ(u)𝑟 × ℛℛ(v)𝑠 + ℛℛ(u)𝑠 × ℛℛ(v)𝑟, then 𝑇𝐼(𝒢) is the 

reduced reverse generalized Zagreb index ℛℛ[𝑀𝑟,𝑠(𝒢)].  

3. Results and Discussion 

The chemical structure of 𝑇𝐶𝑁𝐵(𝑝, 𝑞) consists of 𝑝 ≥ 1 horizontal and 𝑞 ≥ 1 vertical 

expansions. For instance, the structure of 𝑇𝐶𝑁𝐵(1,1) is depicted in Figure 1. In general, the 

𝑇𝐶𝑁𝐵(𝑝, 𝑞) graphical structure consists of 25𝑝 + 25𝑞 + 33𝑝𝑞 + 17 vertices (atoms) and 

32𝑝 + 32𝑞 + 44𝑝𝑞 + 20 edges (bonds). Furthermore, it comprises vertices of four different 

degrees, ranging from 1 to 4, and five edge partitions, as shown in Tables 1 and 2.  

 
Figure 1. Molecular structure of 𝑇𝐶𝑁𝐵(1,1). 

Table 1. Vertex partition of 𝑇𝐶𝑁𝐵(𝑝, 𝑞). 

𝒅𝐮 𝓡𝓡(𝐮) Frequency 

1 5 2𝑝+2𝑞+4𝑝𝑞 

2 4 8𝑝 + 8𝑞 + 4𝑝𝑞 + 12 

3 3 14𝑝 + 14𝑞 + 24𝑝𝑞 + 4 

4 2 𝑝 + 𝑞 + 𝑝𝑞 + 1 

Table 2. Edge partition of 𝑇𝐶𝑁𝐵(𝑝, 𝑞) based on degree and reduced reverse degree of end vertices. 

(𝒅𝐮, 𝒅𝐯) (𝓡𝓡(𝐮), 𝓡𝓡(𝐯)) Frequency 

(1, 3) (5, 3) 2𝑝 + 2𝑞 + 4𝑝𝑞 

(2, 3) (4, 3) 8𝑝 + 8𝑞 + 8𝑝𝑞 + 8 

(2, 2) (4, 4) 4𝑝 + 4𝑞 + 8 

(3, 3) (3, 3) 14𝑝 + 14𝑞 + 28𝑝𝑞 

(3, 4) (3, 2) 4𝑝 + 4𝑞 + 4𝑝𝑞 + 4 

 Using these vertex and edge partitions, we propose the following result, giving the 

expression of any reduced reverse vertex degree-based topological index of 𝑇𝐶𝑁𝐵(𝑝, 𝑞). Using 

the proposition, we obtain the closed forms of the expressions for various reverse vertex 

degree-based topological indices in the latter part of the section.  

Proposition 3.1 For 𝒢 = 𝑇𝐶𝑁𝐵(𝑝, 𝑞), the reduced reverse vertex degree-based 

topological index ℛℛ𝑇𝐼(𝒢) is given by  
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ℛℛ𝑇𝐼(𝑇𝐶𝑁𝐵(𝑝, 𝑞)) =  ℛℛ𝑇𝐼(𝒢)     

=  (2𝑝 + 2𝑞 + 4𝑝𝑞)𝑓(5,3) +  (8𝑝 + 8𝑞 + 8𝑝𝑞 + 8) 𝑓(4,3) 

                   + (4𝑝 + 4𝑞 + 8)𝑓(4,4) + (14𝑝 + 14𝑞 + 28𝑝𝑞)𝑓(3,3) 

+(4𝑝 + 4𝑞 + 4𝑝𝑞 + 4)𝑓(3,2)              (3) 

Proposition 3.2 The reduced reverse Zagreb indices of 𝒢 = 𝑇𝐶𝑁𝐵(𝑝, 𝑞) are:  

• ℛℛ𝑀1(𝒢) = 208𝑝 + 208𝑞 + 276𝑝𝑞 + 140          (4) 

• ℛℛ𝑀2(𝒢) = 340𝑝 + 340𝑞 + 432𝑝𝑞 + 248          (5) 

• ℛℛ𝑀3(𝒢) = 16𝑝 + 16𝑞 + 20𝑝𝑞 + 12.                  (6) 

Proof. By definition, the first reduced reverse Zagreb index of 𝒢 is given by,  

ℛℛ𝑀1(𝒢) = ∑

uv∈𝐸(𝒢)

(ℛℛ(u) + ℛℛ(v))

= (2𝑝 + 2𝑞 + 4𝑝𝑞)(5 + 3) + (8𝑝 + 8𝑞 + 8𝑝𝑞 + 8)(4 + 3)

+ (4𝑝 + 4𝑞 + 8)(4 + 4)  + (14𝑝 + 14𝑞 + 28𝑝𝑞)(3 + 3)

+ (4𝑝 + 4𝑞 + 4𝑝𝑞 + 4)(3 + 2)    

= 208𝑝 + 208𝑞 + 276𝑝𝑞 + 140                             (7) 

 

The second reduced reverse Zagreb index of 𝒢 is given by 

 

ℛℛ𝑀2(𝒢) = ∑

uv∈𝐸(𝒢)

(ℛℛ(u) × ℛℛ(v)) 

 = (2𝑝 + 2𝑞 + 4𝑝𝑞)(5 × 3) + (8𝑝 + 8𝑞 + 8𝑝𝑞 + 8)(4 × 3)

+ (4𝑝 + 4𝑞 + 8)(4 × 4)  + (14𝑝 + 14𝑞 + 28𝑝𝑞)(3 × 3) + (4𝑝

+ 4𝑞 + 4𝑝𝑞 + 4)(3 × 2) 

     = 340𝑝 + 340𝑞 + 432𝑝𝑞 + 248                          (8) 

 

The third reduced reverse Zagreb index of 𝒢 is given by,  

ℛℛ𝑀3(𝒢) = ∑

uv∈𝐸(𝒢)

(ℛℛ(u) − ℛℛ(v)) 

                     = (2𝑝 + 2𝑞 + 4𝑝𝑞)(5 − 3) + (8𝑝 + 8𝑞 + 8𝑝𝑞 + 8)(4 − 3) + (4𝑝 + 4𝑞 + 8)(4

− 4) 

                     +(14𝑝 + 14𝑞 + 28𝑝𝑞)(3 − 3) + (4𝑝 + 4𝑞 + 4𝑝𝑞 + 4)(3 − 2) 

      = 16𝑝 + 16𝑞 + 20𝑝𝑞 + 12                                  (9) 

 

Proposition 3.3 The reduced reverse hyper-Zagreb indices of 𝒢 = 𝑇𝐶𝑁𝐵(𝑝, 𝑞) are: 

 

• ℛℛ𝐻𝑀1(𝒢) = 1380𝑝 + 1380𝑞 + 1756𝑝𝑞 + 1004             (10) 

• ℛℛ𝐻𝑀2(𝒢) = 3904𝑝 + 3904𝑞 + 4464𝑝𝑞 + 3344              (11) 

 

Proof. The first reduced reverse hyper-Zagreb index of 𝒢 is given by,  

ℛℛ𝐻𝑀1(𝒢) = ∑

uv∈𝐸(𝒢)

(ℛℛ(u) + ℛℛ(v))2 

        = (2𝑝 + 2𝑞 + 4𝑝𝑞)(5 + 3)2 + (8𝑝 + 8𝑞 + 8𝑝𝑞 + 8)(4 + 3)2 + (4𝑝 + 4𝑞 + 8) 

                            (4 + 4)2 + (14𝑝 + 14𝑞 + 28𝑝𝑞)(3 + 3)2 + (4𝑝 + 4𝑞 + 4𝑝𝑞 + 4)(3 + 2)2 

          = 1380𝑝 + 1380𝑞 + 1756𝑝𝑞 + 1004                (12) 
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The second reduced reverse hyper-Zagreb index of 𝒢 is given by 

ℛℛ𝐻𝑀2(𝒢) = ∑

uv∈𝐸(𝒢)

(𝒢) =) × ℛℛ(v))2 

        = (2𝑝 + 2𝑞 + 4𝑝𝑞)(5 × 3)2 + (8𝑝 + 8𝑞 + 8𝑝𝑞 + 8)(4 × 3)2 + (4𝑝 + 4𝑞 + 8) 

        (4 × 4)2 + (14𝑝 + 14𝑞 + 28𝑝𝑞)(3 × 3)2 + (4𝑝 + 4𝑞 + 4𝑝𝑞 + 4)(3 × 2)2 

        = 3904𝑝 + 3904𝑞 + 4464𝑝𝑞 + 3344              (13) 

 

Proposition 3.4 The reduced reverse forgotten index, atom-bond connectivity (ABC) 

index, and geometric-arithmetic (GA) index of 𝒢 = 𝑇𝐶𝑁𝐵(𝑝, 𝑞) are: 

 

• ℛℛ𝐹(𝒢) = 700𝑝 + 700𝑞 + 892𝑝𝑞 + 308                                      (14) 

• ℛℛ𝐴𝐵𝐶(𝒢) = 21.0408𝑝 + 21.0408𝑞 + 29.19𝑝𝑞 + 12.89             (15) 

• ℛℛ𝐺𝐴(𝒢) = 31.7736𝑝 + 31.7736𝑞 + 43.7101𝑝𝑞 + 19.8371       (16) 

 

Proof. The reduced reverse forgotten index of 𝒢 is given by 

ℛℛ𝐹(𝒢) = ∑

uv∈𝐸(𝒢)

(ℛℛ(u)2 + ℛℛ(v)2) 

    = (2𝑝 + 2𝑞 + 4𝑝𝑞)(52 + 32) + (8𝑝 + 8𝑞 + 8𝑝𝑞 + 8)(42 + 32) + (4𝑝 + 4𝑞 + 8) 

        (42 + 42) + (14𝑝 + 14𝑞 + 28𝑝𝑞)(32 + 32) + (4𝑝 + 4𝑞 + 4𝑝𝑞 + 4)(32 + 22) 

                   = 700𝑝 + 700𝑞 + 892𝑝𝑞 + 308              (17) 

 

The reduced reverse 𝐴𝐵𝐶 index of 𝒢 is given by 

ℛℛ𝐴𝐵𝐶(𝒢) = ∑

uv∈𝐸(𝒢)

(√
ℛℛ(u) + ℛℛ(v) − 2

ℛℛ(u) × ℛℛ(v)
) 

         = (2𝑝 + 2𝑞 + 4𝑝𝑞) (√
5+3−2

5×3
) + (8𝑝 + 8𝑞 + 8𝑝𝑞 + 8) (√

4+3−2

4×3
)   

         +(4𝑝 + 4𝑞 + 8) (√
4+4−2

4×4
) + (14𝑝 + 14𝑞 + 28𝑝𝑞) (√

3+3−2

3×3
) 

         +(4𝑝 + 4𝑞 + 4𝑝𝑞 + 4) (√
3+2−2

3×2
) 

         = 21.0408𝑝 + 21.0408𝑞 + 29.19𝑝𝑞 + 12.89              (18) 

 

The reduced reverse 𝐺𝐴 index of 𝒢 is given by 

ℛℛ𝐺𝐴(𝒢) = ∑

uv∈𝐸(𝒢)

(
2√ℛℛ(u) × ℛℛ(v)

ℛℛ(u) + ℛℛ(v)
) 

                     = (2𝑝 + 2𝑞 + 4𝑝𝑞) (
2√5 × 3

5 + 3
) + (8𝑝 + 8𝑞 + 8𝑝𝑞 + 8) (

2√4 × 3

4 + 3
) 

                     +(4𝑝 + 4𝑞 + 8) (
2√4 × 4

4 + 4
) + (14𝑝 + 14𝑞 + 28𝑝𝑞) (

2√3 × 3

3 + 3
) 

                     +(4𝑝 + 4𝑞 + 4𝑝𝑞 + 4) (
2√3 × 2

3 + 2
) 
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                    = 31.7736𝑝 + 31.7736𝑞 + 43.7101𝑝𝑞 + 19.8371.          (19) 

Proposition 3.5 The reduced reverse redefined Zagreb indices of  𝒢 = 𝑇𝐶𝑁𝐵(𝑝, 𝑞) are:   

    • ℛℛ[𝑅𝑒𝑍1(𝒢)] = 20.40𝑝 + 20.40𝑞 + 28.80𝑝𝑞 + 12,  

    • ℛℛ[𝑅𝑒𝑍2(𝒢)] = 51.26𝑝 + 51.26𝑞 + 68.01𝑝𝑞 + 34.51,  

    • ℛℛ[𝑅𝑒𝑍3(𝒢)] = 2300𝑝 + 2300𝑞 + 2784𝑝𝑞 + 1816.   

Proof. The first reduced reverse redefined Zagreb index of 𝒢 is given by,  

ℛℛ[𝑅𝑒𝑍1(𝒢)] = ∑

uv∈𝐸(𝒢)

(
ℛℛ(u) + ℛℛ(v)

ℛℛ(u) ×ℛℛ(v)
) 

                          = (2𝑝 + 2𝑞 + 4𝑝𝑞) (
5 + 3

5 × 3
) + (8𝑝 + 8𝑞 + 8𝑝𝑞 + 8) (

4 + 3

4 × 3
) + (4𝑝 + 4𝑞

+ 8) (
4 + 4

4 × 4
) + (14𝑝 + 14𝑞 + 28𝑝𝑞) (

3 + 3

3 × 3
) + (4𝑝 + 4𝑞 + 4𝑝𝑞

+ 4) (
3 + 2

3 × 2
) 

                          = 20.40𝑝 + 20.40𝑞 + 28.80𝑝𝑞 + 12.          (20) 

The second reduced reverse redefined Zagreb index of 𝒢 is given by,  

ℛℛ[𝑅𝑒𝑍2(𝒢)] = ∑

uv∈𝐸(𝒢)

(
ℛℛ(u) × ℛℛ(v)

ℛℛ(u) + ℛℛ(v)
) 

                           = (2𝑝 + 2𝑞 + 4𝑝𝑞) (
5 × 3

5 + 3
) + (8𝑝 + 8𝑞 + 8𝑝𝑞 + 8) (

4 × 3

4 + 3
) + (4𝑝 + 4𝑞

+ 8) (
4 × 4

4 + 4
) + (14𝑝 + 14𝑞 + 28𝑝𝑞) (

3 × 3

3 + 3
) + (4𝑝 + 4𝑞 + 4𝑝𝑞

+ 4) (
3 × 2

3 + 2
) 

                           = 51.26𝑝 + 51.26𝑞 + 68.01𝑝𝑞 + 34.51.           (21) 

The third reduced reverse redefined Zagreb index of 𝒢 is given by,  

ℛℛ[𝑅𝑒𝑍3(𝒢)] = ∑

uv∈𝐸(𝒢)

(ℛℛ(u) × ℛℛ(v))(ℛℛ(u) + ℛℛ(v)) 

 = (2𝑝 + 2𝑞 + 4𝑝𝑞)(5 × 3)(5 + 3) + (8𝑝 + 8𝑞 + 8𝑝𝑞 + 8)(4 × 3)(4 + 3) 

 +(4𝑝 + 4𝑞 + 8)(4 × 4)(4 + 4) + (14𝑝 + 14𝑞 + 28𝑝𝑞)(3 × 3)(3 + 3) 

 +(4𝑝 + 4𝑞 + 4𝑝𝑞 + 4)(3 × 2)(3 + 2) 

 = 2300𝑝 + 2300𝑞 + 2784𝑝𝑞 + 1816.          (22) 

Proposition 3.6 The reduced reverse generalized Zagreb index of 𝒢 = 𝑇𝐶𝑁𝐵(𝑝, 𝑞) is 

 

ℛℛ[𝑀𝑟,𝑠(𝒢)] = (2𝑝 + 2𝑞 + 4𝑝𝑞)(5𝑟 × 3𝑠 + 5𝑠 × 3𝑟) + (8𝑝 + 8𝑞 + 8𝑝𝑞 +

8)(4𝑟 × 3𝑠 + 4𝑠 × 3𝑟 + (8𝑝 + 8𝑞 + 16)(4𝑟+𝑠) + (28𝑝 + 28𝑞 + 56𝑝𝑞)(3𝑟+𝑠) + (4𝑝 +
4𝑞 + 4𝑝𝑞 + 4)(3𝑟 × 2𝑠 + 3𝑠 × 2𝑟).            (23) 

Proof. The reduced reverse generalized Zagreb index of 𝒢 is given by  

ℛℛ[𝑀𝑟,𝑠(𝒢)] = ∑

uv∈𝐸(𝒢)

(ℛℛ(u)𝑟 × ℛℛ(v)𝑠 + ℛℛ(u)𝑠 × ℛℛ(v)𝑟) 

          = (2𝑝 + 2𝑞 + 4𝑝𝑞)(5𝑟 × 3𝑠 + 5𝑠 × 3𝑟) + (8𝑝 + 8𝑞 + 8𝑝𝑞 + 8)(4𝑟 × 3𝑠 +

                             4𝑠 × 3𝑟) + (4𝑝 + 4𝑞 + 8)((4𝑟 × 4𝑠) + (4𝑠 × 4𝑟)) + (14𝑝 + 14𝑞 +

28𝑝𝑞)                         ((3𝑟 × 3𝑠) + (3𝑠 × 3𝑟)) + (4𝑝 + 4𝑞 + 4𝑝𝑞 + 4)(3𝑟 × 2𝑠 + 3𝑠 × 2𝑟) 
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         = (2𝑝 + 2𝑞 + 4𝑝𝑞)(5𝑟 × 3𝑠 + 5𝑠 × 3𝑟) + (8𝑝 + 8𝑞 + 8𝑝𝑞 + 8)(4𝑟 × 3𝑠 +

                             4𝑠 × 3𝑟) + (8𝑝 + 8𝑞 + 16)(4𝑟+𝑠) + (28𝑝 + 28𝑞 + 56𝑝𝑞)(3𝑟+𝑠) +

                      (4𝑝 + 4𝑞 + 4𝑝𝑞 + 4)(3𝑟 × 2𝑠 + 3𝑠 × 2𝑟).          (24)  

Tables 3 and 4 provide the values of the topological indices discussed in the above 

propositions for specific values of 𝑝 and 𝑞 with 𝑝 = 𝑞 = 1, 2, … , 20. Further, Figure 2 gives 

the graphical interpretation of the indices for these values of 𝑝 and 𝑞. 

Table 3. Numerical behaviour of topological indices of 𝒢 = 𝑇𝐶𝑁𝐵(𝑝, 𝑞) for some specific values of 𝑝 and 𝑞 

with 𝑝 = 𝑞. 

(𝒑, 𝒒) 𝓡𝓡𝑴𝟏(𝓖) 𝓡𝓡𝑴𝟐(𝓖) 𝓡𝓡𝑴𝟑(𝓖) 𝓡𝓡𝑯𝑴𝟏(𝓖) 𝓡𝓡𝑯𝑴𝟐(𝓖) 𝓡𝓡𝑭(𝓖) 

(1, 1) 832 1360 64 5520 15616 2600 

(2, 2) 2076 3336 156 13548 36816 6676 

(3, 3) 3872 6176 288 25088 66944 12536 

(4, 4) 6220 9880 460 40140 106000 20180 

(5, 5) 9120 14448 672 58704 153984 29608 

(6, 6) 12572 19880 924 80780 210896 40820 

(7, 7) 16576 26176 1216 106368 276736 53816 

(8, 8) 21132 33336 1548 135468 351504 68596 

(9, 9) 26240 41360 1920 168080 435200 85160 

(10, 10) 31900 50248 2332 204204 527824 103508 

(11, 11) 38112 60000 2784 243840 629376 123640 

(12, 12) 44876 70616 3276 286988 739856 145556 

(13, 13) 52192 82096 3808 333648 859264 169256 

(14, 14) 60060 94440 4380 383820 987600 194740 

(15, 15) 68480 107648 4992 437504 1124864 222008 

(16, 16) 77452 121720 5644 494700 1271056 251060 

(17, 17) 86976 136656 6336 555408 1426176 281896 

(18, 18) 97052 152456 7068 619628 1590224 314516 

(19, 19) 107680 169120 7840 687360 1763200 348920 

(20, 20) 118860 186648 8652 758604 1945104 385108 

Table 4.  Numerical behaviour of topological indices of 𝒢 = 𝑇𝐶𝑁𝐵(𝑝, 𝑞) for some specific values of 𝑝 and 𝑞 

with 𝑝 = 𝑞. 

(𝒑, 𝒒) 𝓡𝓡𝑨𝑩𝑪(𝓖) 𝓡𝓡𝑮𝑨(𝓖) 𝓡𝓡(𝑹𝒆𝒁𝟏(𝓖)) 𝓡𝓡(𝑹𝒆𝒁𝟐(𝓖)) 𝓡𝓡(𝑹𝒆𝒁𝟑(𝓖)) 

(1, 1) 84.1616 127.0945 81.6 205.04 9200 

(2, 2) 213.8132 321.7721 208.8 511.59 22152 

(3, 3) 401.8448 603.8699 393.6 954.16 40672 

(4, 4) 648.2564 973.3879 636 1532.75 64760 

(5, 5) 953.0480 1430.3262 936 2247.36 94416 

(6, 6) 1316.2196 1974.6847 1293.6 3097.99 129640 

(7, 7) 1737.7712 2606.4634 1708.8 4084.64 170432 

(8, 8) 2217.7028 3325.6623 2181.6 5207.31 216792 

(9, 9) 2756.0144 4132.2815 2712 6466 268720 

(10, 10) 3352.7060 5026.3209 3300 7860.71 326216 

(11, 11) 4007.7776 6007.7805 3945.6 9391.44 389280 

(12, 12) 4721.2292 7076.6604 4648.8 11058.19 457912 

(13, 13) 5493.0608 8232.9605 5409.6 12860.96 532112 

(14, 14) 6323.2724 9476.6808 6228 14799.75 611880 

(15, 15) 7211.8640 10807.8213 7104 16874.56 697216 

(16, 16) 8158.8356 12226.3821 8037.6 19085.39 788120 

(17, 17) 9164.1872 13732.3631 9028.8 21432.24 884592 

(18, 18) 10227.9188 15325.7643 10077.6 23915.11 986632 

(19, 19) 11350.0304 17006.5857 11184 26534 1094240 

(20, 20) 12530.5220 18774.8274 12348 29288.91 1207416 
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Reduced reverse Zagreb indices Reduced reverse hyper-Zagreb indices 

  

Reduced reverse forgotten and GA indices 
Reduced reverse redefined first and second 

Zagreb indices 

 
Reduced reverse ABC and the redefined third Zagreb indices 

Figure 2. Graphical representation of reduced reverse degree-based topological indices of 𝒢 =
𝑇𝐶𝑁𝐵(𝑝, 𝑞) for some specific values of 𝑝 and 𝑞 with 𝑝 = 𝑞. 

4. Graph Entropy 

Definition 4.1 [52] Let 𝒢 = (𝑉, 𝐸) be a connected graph of order 𝑛 and 𝜙 be an 

arbitrary function defined on the vertex set 𝑉 = {𝑣1, 𝑣2, ⋯ , 𝑣𝑛} of 𝒢. Then the entropy of 𝒢 is 

defined as  

𝐼𝜙(𝒢) = − ∑

𝑛

𝑖=1

𝜙(vi)

∑𝑛
𝑖=1 𝜙(vi)

𝑙𝑜𝑔 (
𝜙(vi)

∑𝑛
𝑖=1 𝜙(vi)

). 

As defined in [53], the entropy of the edge-weighted graph 𝒢 = (𝑉, 𝐸)), with the edge 

weight of the edge vivj being 𝜔(vivj), is given by  

𝔼(𝒢) = − ∑

vivj∈𝐸

𝜔(vivj)

∑vivj∈𝐸 𝜔(vivj)
𝑙𝑜𝑔 (

𝜔(vivj)

∑vivj∈𝐸 𝜔(vivj)
) 

 = −
1

∑vivj∈𝐸 𝜔(vivj)
∑

vivj∈𝐸

(𝜔(vivj) [𝑙𝑜𝑔(𝜔(vivj)) − 𝑙𝑜𝑔 ( ∑

vivj∈𝐸

𝜔(vivj))])       
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so that 

𝔼(𝒢) = 𝑙𝑜𝑔 ( ∑

vivj∈𝐸

𝜔(vivj)) −
1

∑vivj∈𝐸 𝜔(vivj)
∑

vivj∈𝐸

(𝜔(vivj)𝑙𝑜𝑔 (𝜔(vivj))). 

Replacing ∑vivj∈𝐸 𝜔(vivj) with 𝑇𝐼(𝒢), we get the required degree-based entropy of 𝒢 

as  

 𝔼(𝒢) = 𝑙𝑜𝑔(𝑇𝐼(𝒢)) −
1

𝑇𝐼(𝒢)
∑vivj∈𝐸 (𝜔(vivj)𝑙𝑜𝑔(𝜔(vivj))).          (25) 

 

Reduced reverse degree-based entropy of tetracyanobenzene MOFs. 

For 𝒢 = 𝑇𝐶𝑁𝐵(𝑝, 𝑞), the reduced reverse vertex degree-based entropy 𝔼ℛℛ𝑇𝐼(𝒢) is 

given by  

𝔼ℛℛ𝑇𝐼(𝒢) = 𝑙𝑜𝑔(ℛℛ𝑇𝐼(𝒢)) −
1

ℛℛ𝑇𝐼(𝒢)
∑uv∈𝐸(𝒢) [𝑓(ℛℛ(u), ℛℛ(v)) ×

𝑙𝑜𝑔(𝑓(ℛℛ(u), ℛℛ(v)))]      (26) 

4.1. First reduced reverse Zagreb entropy. 

If 𝑓(ℛℛ(u), ℛℛ(v)) = ℛℛ(u) + ℛℛ(v) and ℛℛ𝑀1(𝒢) = 208𝑝 + 208𝑞 + 276𝑝𝑞 +

140, then the first reduced reverse Zagreb entropy is  

𝔼ℛℛ𝑀1(𝒢) = 𝑙𝑜𝑔(ℛℛ𝑀1(𝒢))

−
1

ℛℛ𝑀1(𝒢)
∑

uv∈𝐸(𝒢)

[(ℛℛ(u) + ℛℛ(v)) × 𝑙𝑜𝑔(ℛℛ(u) + ℛℛ(v))] 

                      = 𝑙𝑜𝑔(ℛℛ𝑀1(𝒢)) −
1

ℛℛ𝑀1(𝒢)
[(2𝑝 + 2𝑞 + 4𝑝𝑞) × 8 × 𝑙𝑜𝑔8 + (8𝑝 +

8𝑞 + 8𝑝𝑞 + 8) × 7 × 𝑙𝑜𝑔7 + (4𝑝 + 4𝑞 + 8) × 8 × 𝑙𝑜𝑔8 + (14𝑝 + 14𝑞 + 28𝑝𝑞) × 6 ×

𝑙𝑜𝑔6 + (4𝑝 + 4𝑞 + 4𝑝𝑞 + 4) × 5 × 𝑙𝑜𝑔5].          (27) 

4.2. Second reduced reverse Zagreb entropy. 

If 𝑓(ℛℛ(u), ℛℛ(v)) = ℛℛ(u) × ℛℛ(v) and ℛℛ𝑀2(𝒢) = 340𝑝 + 340𝑞 + 432𝑝𝑞 +

248, then the second reduced reverse Zagreb entropy is  

𝔼ℛℛ𝑀2(𝒢) = 𝑙𝑜𝑔(ℛℛ𝑀2(𝒢))

−
1

ℛℛ𝑀2(𝒢)
∑

uv∈𝐸(𝒢)

[ℛℛ(u) × ℛℛ(v) × 𝑙𝑜𝑔(ℛℛ(u) × ℛℛ(v))] 

    = 𝑙𝑜𝑔(ℛℛ𝑀2(𝒢)) −
1

ℛℛ𝑀2(𝒢)
[(2𝑝 + 2𝑞 + 4𝑝𝑞) × 15 × 𝑙𝑜𝑔15 + (8𝑝 + 8𝑞 +

8𝑝𝑞 +                          8) × 12 × 𝑙𝑜𝑔12 + (4𝑝 + 4𝑞 + 8) × 16 × 𝑙𝑜𝑔16 + (14𝑝 + 14𝑞 +

28𝑝𝑞) × 9 ×                         𝑙𝑜𝑔9 + (4𝑝 + 4𝑞 + 4𝑝𝑞 + 4) × 6 × 𝑙𝑜𝑔6].          (28) 

4.3. First reduced reverse hyper Zagreb entropy. 

If 𝑓(ℛℛ(u), ℛℛ(v)) = (ℛℛ(u) + ℛℛ(v))2 and ℛℛ𝐻𝑀1(𝒢) = 1380𝑝 + 1380𝑞 +

1756𝑝𝑞 + 1004, then the first reduced reverse hyper Zagreb entropy is  

𝔼ℛℛ𝐻𝑀1(𝒢) = 𝑙𝑜𝑔(ℛℛ𝐻𝑀1(𝒢))

−
1

ℛℛ𝐻𝑀1(𝒢)
∑

uv∈𝐸(𝒢)

[(ℛℛ(u) + ℛℛ(v))2 × 𝑙𝑜𝑔(ℛℛ(u) + ℛℛ(v))2] 
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       = 𝑙𝑜𝑔(ℛℛ𝐻𝑀1(𝒢)) −
1

ℛℛ𝐻𝑀1(𝒢)
[(2𝑝 + 2𝑞 + 4𝑝𝑞) × 64 × 𝑙𝑜𝑔64 + (8𝑝 + 8𝑞 +

                           8𝑝𝑞 + 8) × 49 × 𝑙𝑜𝑔49 + (4𝑝 + 4𝑞 + 8) × 64 × 𝑙𝑜𝑔64 + (14𝑝 + 14𝑞 +

28𝑝𝑞) ×                            36 × 𝑙𝑜𝑔36 + (4𝑝 + 4𝑞 + 4𝑝𝑞 + 4) × 25 × 𝑙𝑜𝑔25].          (29) 

4.4. Second reduced reverse hyper Zagreb entropy. 

If 𝑓(ℛℛ(u), ℛℛ(v)) = (ℛℛ(u) × ℛℛ(v))2 and ℛℛ𝐻𝑀2(𝒢) = 3904𝑝 + 3904𝑞 +

4464𝑝𝑞 + 3344, then the second reduced reverse hyper Zagreb entropy is  

𝔼ℛℛ𝐻𝑀2(𝒢) = 𝑙𝑜𝑔(ℛℛ𝐻𝑀2(𝒢))

−
1

ℛℛ𝐻𝑀2(𝒢)
∑

uv∈𝐸(𝒢)

[(ℛℛ(u) × ℛℛ(v))2 × 𝑙𝑜𝑔(ℛℛ(u) × ℛℛ(v))2] 

 = 𝑙𝑜𝑔(ℛℛ𝐻𝑀2(𝒢)) −
1

ℛℛ𝐻𝑀2(𝒢)
[(2𝑝 + 2𝑞 + 4𝑝𝑞) × 225 × 𝑙𝑜𝑔225 + (8𝑝 +

                                   8𝑞 + 8𝑝𝑞 + 8) × 144 × 𝑙𝑜𝑔144 + (4𝑝 + 4𝑞 + 8) × 256 × 𝑙𝑜𝑔256 +

(14𝑝 +                                    14𝑞 + 28𝑝𝑞) × 81 × 𝑙𝑜𝑔81 + (4𝑝 + 4𝑞 + 4𝑝𝑞 + 4) × 36 ×

𝑙𝑜𝑔36].          (30) 

4.5. Reduced reverse forgotten entropy. 

If 𝑓(ℛℛ(u), ℛℛ(v)) = ℛℛ(u)2 + ℛℛ(v)2 and ℛℛ𝐹(𝒢) = 700𝑝 + 700𝑞 +

892𝑝𝑞 + 308, then the reduced reverse forgotten entropy is  

𝔼ℛℛ𝐹(𝒢) = 𝑙𝑜𝑔(ℛℛ𝐹(𝒢))

−
1

ℛℛ𝐹(𝒢)
∑

uv∈𝐸(𝒢)

[(ℛℛ(u)2 + ℛℛ(v)2) × 𝑙𝑜𝑔(ℛℛ(u)2 + ℛℛ(v)2)] 

          = 𝑙𝑜𝑔(ℛℛ𝐹(𝒢)) −
1

ℛℛ𝐹(𝒢)
[(2𝑝 + 2𝑞 + 4𝑝𝑞) × 34 × 𝑙𝑜𝑔34 + (8𝑝 + 8𝑞 +

8𝑝𝑞 +                                    8) × 25 × 𝑙𝑜𝑔25 + (4𝑝 + 4𝑞 + 8) × 32 × 𝑙𝑜𝑔32 + (14𝑝 +

14𝑞 + 28𝑝𝑞) ×                                    18 × 𝑙𝑜𝑔18 + (4𝑝 + 4𝑞 + 4𝑝𝑞 + 4) × 13 × 𝑙𝑜𝑔13].          

(31) 

4.6. Reduced reverse atom-bond connectivity (𝑨𝑩𝑪) entropy. 

If 𝑓(ℛℛ(u), ℛℛ(v)) =  √
ℛℛ(u)+ℛℛ(v)−2

ℛℛ(u)×ℛℛ(v)
 and ℛℛ𝐴𝐵𝐶(𝒢) = 21.0408𝑝 + 21.0408𝑞 +

29.19𝑝𝑞 + 12.89, then the reduced reverse atom-bond connectivity (𝐴𝐵𝐶) entropy is  

𝔼ℛℛ𝐴𝐵𝐶(𝒢) = 𝑙𝑜𝑔(ℛℛ𝐴𝐵𝐶(𝒢))

−
1

ℛℛ𝐴𝐵𝐶(𝒢)
∑

 uv∈𝐸(𝒢)

[√
ℛℛ(u) + ℛℛ(v) − 2

ℛℛ(u) × ℛℛ(v)

× 𝑙𝑜𝑔 (√
ℛℛ(u) + ℛℛ(v) − 2

ℛℛ(u) × ℛℛ(v)
)] 

       = 𝑙𝑜𝑔(ℛℛ𝐴𝐵𝐶(𝒢)) −
1

ℛℛ𝐴𝐵𝐶(𝒢)
[(2𝑝 + 2𝑞 + 4𝑝𝑞) × √

2

5
× 𝑙𝑜𝑔 (√

2

5
) 

             +(8𝑝 + 8𝑞 + 8𝑝𝑞 + 8) × √
5

12
× 𝑙𝑜𝑔 (√

5

12
) + (4𝑝 + 4𝑞 + 8) × √

3

8
× 𝑙𝑜𝑔 (√

3

8
) 
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       +(14𝑝 + 14𝑞 + 28𝑝𝑞) × √
4

9
× 𝑙𝑜𝑔 (√

4

9
) + (4𝑝 + 4𝑞 + 4𝑝𝑞 + 4) × √

1

2
×

𝑙𝑜𝑔 (√
1

2
)].          (32) 

4.7. Reduced reverse geometric-arithmetic (𝐺𝐴) entropy. 

If 𝑓(ℛℛ(u), ℛℛ(v)) =
2√ℛℛ(u)×ℛℛ(v)

ℛℛ(u)+ℛℛ(v)
 and ℛℛ𝐺𝐴(𝒢) = 31.7736𝑝 + 31.7736𝑞 +

43.7101𝑝𝑞 + 19.8371, then the reduced reverse geometric-arithmetic (𝐺𝐴) entropy is  

𝔼ℛℛ𝐺𝐴(𝒢) = 𝑙𝑜𝑔(ℛℛ𝐺𝐴(𝒢))

−
1

ℛℛ𝐺𝐴(𝒢)
∑

uv∈𝐸(𝒢)

[(
2√ℛℛ(u) × ℛℛ(v)

ℛℛ(u) + ℛℛ(v)
) × 𝑙𝑜𝑔 (

2√ℛℛ(u) × ℛℛ(v)

ℛℛ(u) + ℛℛ(v)
)] 

       = 𝑙𝑜𝑔(ℛℛ𝐺𝐴(𝒢)) −
1

ℛℛ𝐺𝐴(𝒢)
[(2𝑝 + 2𝑞 + 4𝑝𝑞) ×

√15

4
× 𝑙𝑜𝑔 (

√15

4
) 

       +(8𝑝 + 8𝑞 + 8𝑝𝑞 + 8) ×
4√3

7
× 𝑙𝑜𝑔 (

4√3

7
) + (4𝑝 + 4𝑞 + 4𝑝𝑞 + 4) ×

2√6

5
×

𝑙𝑜𝑔 (
2√6

5
)].         (33) 

4.8. Reduced reverse redefined first Zagreb entropy. 

If 𝑓(ℛℛ(u), ℛℛ(v)) =
ℛℛ(u)+ℛℛ(v)

ℛℛ(u)×ℛℛ(v)
 and ℛℛ[𝑅𝑒𝑍1(𝒢)] = 20.40𝑝 + 20.40𝑞 +

28.80𝑝𝑞 + 12, then the reduced reverse redefined first Zagreb entropy is  

𝔼ℛℛ[𝑅𝑒𝑍1(𝒢)] = 𝑙𝑜𝑔(ℛℛ[𝑅𝑒𝑍1(𝒢)])

−
1

ℛℛ[𝑅𝑒𝑍1(𝒢)]
∑

uv∈𝐸(𝒢)

[(
ℛℛ(u) + ℛℛ(v)

ℛℛ(u) × ℛℛ(v)
) × 𝑙𝑜𝑔 (

ℛℛ(u) + ℛℛ(v)

ℛℛ(u) × ℛℛ(v)
)] 

   = 𝑙𝑜𝑔(ℛℛ[𝑅𝑒𝑍1(𝒢)]) −
1

ℛℛ[𝑅𝑒𝑍1(𝒢)]
[(2𝑝 + 2𝑞 + 4𝑝𝑞) ×

8

15
× 𝑙𝑜𝑔 (

8

15
) 

   +(8𝑝 + 8𝑞 + 8𝑝𝑞 + 8) ×
7

12
× 𝑙𝑜𝑔 (

7

12
) + (4𝑝 + 4𝑞 + 8) ×

1

2
× 𝑙𝑜𝑔 (

1

2
) 

   +(14𝑝 + 14𝑞 + 28𝑝𝑞) ×
2

3
× 𝑙𝑜𝑔 (

2

3
) + (4𝑝 + 4𝑞 + 4𝑝𝑞 + 4) ×

5

6
×

𝑙𝑜𝑔 (
5

6
)].          (34) 

4.9. Reduced reverse redefined second Zagreb entropy. 

If 𝑓(ℛℛ(u), ℛℛ(v)) =
ℛℛ(u)×ℛℛ(v)

ℛℛ(u)+ℛℛ(v)
 and ℛℛ[𝑅𝑒𝑍2(𝒢)] = 51.26𝑝 + 51.26𝑞 +

68.01𝑝𝑞 + 34.51, then the reduced reverse redefined second Zagreb entropy is  

𝔼ℛℛ[𝑅𝑒𝑍2(𝒢)] = 𝑙𝑜𝑔(ℛℛ[𝑅𝑒𝑍2(𝒢)])

−
1

ℛℛ[𝑅𝑒𝑍2(𝒢)]
∑

uv∈𝐸(𝒢)

[(
ℛℛ(u) × ℛℛ(v)

ℛℛ(u) + ℛℛ(v)
) × 𝑙𝑜𝑔 (

ℛℛ(u) × ℛℛ(v)

ℛℛ(u) + ℛℛ(v)
)] 

  = 𝑙𝑜𝑔(ℛℛ[𝑅𝑒𝑍2(𝒢)]) −
1

ℛℛ[𝑅𝑒𝑍2(𝒢)]
[(2𝑝 + 2𝑞 + 4𝑝𝑞) ×

15

8
× 𝑙𝑜𝑔 (

15

8
) 

  +(8𝑝 + 8𝑞 + 8𝑝𝑞 + 8) ×
12

7
× 𝑙𝑜𝑔 (

12

7
) + (4𝑝 + 4𝑞 + 8) × 2 × 𝑙𝑜𝑔2 
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  +(14𝑝 + 14𝑞 + 28𝑝𝑞) ×
3

2
× 𝑙𝑜𝑔 (

3

2
) + (4𝑝 + 4𝑞 + 4𝑝𝑞 + 4) ×

6

5
×

𝑙𝑜𝑔 (
6

5
)].          (35) 

4.10. Reduced reverse redefined third Zagreb entropy. 

If 𝑓(ℛℛ(u), ℛℛ(v)) = (ℛℛ(u) + ℛℛ(v))(ℛℛ(u) × ℛℛ(v)) and ℛℛ[𝑅𝑒𝑍3(𝒢)] =

2300𝑝 + 2300𝑞 + 2784𝑝𝑞 + 1816, then the reduced reverse redefined third Zagreb entropy 

is  

𝔼ℛℛ[𝑅𝑒𝑍3(𝒢)] = 𝑙𝑜𝑔(ℛℛ[𝑅𝑒𝑍3(𝒢)]) −
1

ℛℛ[𝑅𝑒𝑍3(𝒢)]
× ∑

uv∈𝐸(𝒢)

[(ℛℛ(u) + ℛℛ(v)) 

 (ℛℛ(u) × ℛℛ(v)) × 𝑙𝑜𝑔((ℛℛ(u) + ℛℛ(v))(ℛℛ(u) × ℛℛ(v)))] 

         = 𝑙𝑜𝑔(ℛℛ[𝑅𝑒𝑍3(𝒢)]) −
1

ℛℛ[𝑅𝑒𝑍3(𝒢)]
[(2𝑝 + 2𝑞 + 4𝑝𝑞) × 120 × 𝑙𝑜𝑔120 

+(8𝑝 + 8𝑞 + 8𝑝𝑞 + 8) × 84 × 𝑙𝑜𝑔84 + (4𝑝 + 4𝑞 + 8) × 128 × 𝑙𝑜𝑔128 

         +(14𝑝 + 14𝑞 + 28𝑝𝑞) × 54 × 𝑙𝑜𝑔54 + (4𝑝 + 4𝑞 + 4𝑝𝑞 + 4) × 30 × 𝑙𝑜𝑔30].          

(36) 

4.11. Reduced reverse generalized Zagreb entropy. 

If 𝑓(ℛℛ(u), ℛℛ(v)) = ℛℛ(u)𝑟 × ℛℛ(v)𝑠 + ℛℛ(u)𝑠 × ℛℛ(v)𝑟 and  

ℛℛ[𝑀𝑟,𝑠(𝒢)] = (2𝑝 + 2𝑞 + 4𝑝𝑞)(5𝑟 × 3𝑠 + 5𝑠 × 3𝑟) + (8𝑝 + 8𝑞 + 8𝑝𝑞 + 8)(4𝑟 × 3𝑠

+ 4𝑠 × 3𝑟) + (8𝑝 + 8𝑞 + 16)(4𝑟+𝑠)  + (28𝑝 + 28𝑞 + 56𝑝𝑞)(3𝑟+𝑠) 

            +(4𝑝 + 4𝑞 + 4𝑝𝑞 + 4)(3𝑟 × 2𝑠 + 3𝑠 × 2𝑟), 

then the reduced reverse generalized Zagreb entropy is  

𝔼ℛℛ[𝑀𝑟,𝑠(𝒢)] = 𝑙𝑜𝑔(ℛℛ[𝑀𝑟,𝑠(𝒢)])  −
1

ℛℛ[𝑀𝑟,𝑠(𝒢)]
∑uv∈𝐸(𝐺) [(ℛℛ(u)𝑟 × ℛℛ(v)𝑠 

                   +ℛℛ(u)𝑠 × ℛℛ(v)𝑟) × 𝑙𝑜𝑔(ℛℛ(u)𝑟 × ℛℛ(v)𝑠 + ℛℛ(u)𝑠 × ℛℛ(v)𝑟)] 

      = 𝑙𝑜𝑔(ℛℛ[𝑀𝑟,𝑠(𝒢)]) −
1

ℛℛ[𝑀𝑟,𝑠(𝒢)]
[(2𝑝 + 2𝑞 + 4𝑝𝑞) × (5𝑟 × 3𝑠 + 5𝑠 × 3𝑟) 

      × 𝑙𝑜𝑔(5𝑟 × 3𝑠 + 5𝑠 × 3𝑟) + (8𝑝 + 8𝑞 + 8𝑝𝑞 + 8) × (4𝑟 × 3𝑠 + 4𝑠 × 3𝑟)  

      × 𝑙𝑜𝑔(4𝑟 × 3𝑠 + 4𝑠 × 3𝑟) + (8𝑝 + 8𝑞 + 16) × (4𝑟+𝑠) × 𝑙𝑜𝑔(2 × 4𝑟+𝑠) 

      +(28𝑝 + 28𝑞 + 56𝑝𝑞) × (3𝑟+𝑠) × 𝑙𝑜𝑔(2 × 3𝑟+𝑠) + (4𝑝 + 4𝑞 + 4𝑝𝑞 + 4) 

      × (3𝑟 × 2𝑠 + 3𝑠 × 2𝑟) × 𝑙𝑜𝑔(3𝑟 × 2𝑠 + 3𝑠 × 2𝑟)].          (37) 

Tables 5 and 6 provide the values of the entropy measures discussed above for specific values 

of 𝑝 and 𝑞 with 𝑝 = 𝑞 = 1, 2, … , 20. Further, Figure 3 gives the graphical interpretation of the 

entropies for these values of 𝑝 and 𝑞. 

Table 5. Numerical behaviour of entropy measures of 𝒢 = 𝑇𝐶𝑁𝐵(𝑝, 𝑞) for some specific values of 𝑝 and 𝑞 with 

𝑝 = 𝑞. 

(𝒑, 𝒒) 𝔼𝓡𝓡𝑴𝟏
(𝓖) 𝔼𝓡𝓡𝑴𝟐(𝓖) 𝔼𝓡𝓡𝑯𝑴𝟏(𝓖) 𝔼𝓡𝓡𝑯𝑴𝟐(𝓖) 𝔼𝓡𝓡𝑭(𝓖) 

(1, 1) 4.8417 4.812 4.8114 4.7021 4.4957 

(2, 2) 5.7716 5.7457 5.744 5.6439 5.7801 

(3, 3) 6.4016 6.3776 6.3754 6.281 6.3078 

(4, 4) 6.8793 6.8565 6.854 6.7633 6.8108 

(5, 5) 7.2644 7.2423 7.2396 7.1515 7.2091 

(6, 6) 7.587 7.5655 7.5627 7.4765 7.5396 

(7, 7) 7.8647 7.8436 7.8407 7.7559 7.8223 

(8, 8) 8.1085 8.0876 8.0847 8.001 8.0695 

(9, 9) 8.3257 8.3051 8.3021 8.2193 8.2891 

(10, 10) 8.5216 8.5012 8.4981 8.4162 8.4869 
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(𝒑, 𝒒) 𝔼𝓡𝓡𝑴𝟏
(𝓖) 𝔼𝓡𝓡𝑴𝟐(𝓖) 𝔼𝓡𝓡𝑯𝑴𝟏(𝓖) 𝔼𝓡𝓡𝑯𝑴𝟐(𝓖) 𝔼𝓡𝓡𝑭(𝓖) 

(11, 11) 8.7 8.6798 8.6767 8.5953 8.6666 

(12, 12) 8.8638 8.8437 8.8406 8.7597 8.8315 

(13, 13) 9.0152 8.9952 8.992 8.9117 8.9837 

(14, 14) 9.1559 9.136 9.1328 9.0529 9.1251 

(15, 15) 9.2873 9.2676 9.2644 9.1848 9.2571 

(16, 16) 9.4107 9.391 9.3878 9.3085 9.3809 

(17, 17) 9.5269 9.5073 9.504 9.425 9.4975 

(18, 18) 9.6367 9.6171 9.6139 9.5351 9.6076 

(19, 19) 9.7407 9.7213 9.718 9.6394 9.712 

(20, 20) 9.8397 9.8202 9.817 9.7386 9.8112 

Table 6.  Numerical behaviour of entropy measures of 𝒢 = 𝑇𝐶𝑁𝐵(𝑝, 𝑞) for some specific values of 𝑝 and 𝑞 

with 𝑝 = 𝑞. 

(𝒑, 𝒒) 𝔼𝓡𝓡𝐀𝐁𝐂(𝓖) 𝔼𝓡𝓡𝐆𝐀(𝓖) 𝔼𝓡𝓡[𝐑𝐞𝐙𝟏(𝓖)] 𝔼𝓡𝓡[𝐑𝐞𝐙𝟐(𝓖)] 𝔼𝓡𝓡[𝐑𝐞𝐙𝟑(𝓖)] 

(1, 1) 4.8513 4.4744 4.8413 4.8417 4.7641 

(2, 2) 5.7801 5.4452 5.7719 5.772 5.7012 

(3, 3) 6.4096 6.0923 6.4021 6.4022 6.3353 

(4, 4) 6.8871 6.5794 6.8799 6.8801 6.8155 

(5, 5) 7.2719 6.9704 7.2651 7.2652 7.2022 

(6, 6) 7.5944 7.2972 7.5878 7.5879 7.5261 

(7, 7) 7.872 7.5778 7.8655 7.8656 7.8047 

(8, 8) 8.1157 7.8239 8.1093 8.1094 8.0491 

(9, 9) 8.3329 8.0429 8.3265 8.3267 8.2669 

(10, 10) 8.5287 8.2403 8.5224 8.5226 8.4633 

(11, 11) 8.7071 8.4199 8.7008 8.701 8.6421 

(12, 12) 8.8708 8.5847 8.8646 8.8648 8.8062 

(13, 13) 9.0222 8.7369 9.016 9.0162 8.9579 

(14, 14) 9.1629 8.8784 9.1567 9.1569 9.0989 

(15, 15) 9.2943 9.0105 9.2882 9.2884 9.2305 

(16, 16) 9.4176 9.1344 9.4116 9.4117 9.3541 

(17, 17) 9.5338 9.2511 9.5277 9.5279 9.4704 

(18, 18) 9.6436 9.3613 9.6375 9.6377 9.5804 

(19, 19) 9.7476 9.4658 9.7416 9.7418 9.6846 

(20, 20) 9.8465 9.5651 9.8406 9.8407 9.7836 

  
Reduced reverse first Zagreb entropy Reduced reverse second Zagreb entropy 

  
Reduced reverse first hyper Zagreb entropy Reduced reverse second hyper Zagreb entropy 
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Reduced reverse forgotten entropy 
Reduced reverse geometric-arithmetic Zagreb 

entropy 

  
Reduced reverse first atom-bond connectivity 

entropy 
Reduced reverse redefined first Zagreb entropy 

  
Reduced reverse redefined second Zagreb entropy Reduced reverse redefined third Zagreb entropy 

Figure 3. Graphical representation of reduced reverse degree-based entropy of 𝒢 = 𝑇𝐶𝑁𝐵(𝑝, 𝑞). 

5. Regression Analysis 

Regression is a statistical technique that examines the relationship between the 

dependent variable, also known as the response variable, and the independent variable, also 

referred to as the predictor variable. In this study, we use a logarithmic regression model to 

examine the relationship between the various reduced reverse topological indices (𝑇𝐼𝑠) and 

their corresponding entropy measures (𝔼𝑠) of 𝑇𝐶𝑁𝐵(𝑝, 𝑞) for 1 ≤ 𝑝, 𝑞 ≤ 20. The most 

general form of a logarithmic regression model is  

𝑦 = 𝑎 × 𝑙𝑛(𝑥) + 𝑏, 

where 𝑦 is the dependent variable, 𝑥 is the independent variable, 𝑙𝑛 is the natural 

logarithm, 𝑎 is the regression coefficient, and 𝑏 is the regression constant. In this context, we 

consider the dependent variable as an entropy measure and the independent variable as a 

topological index. The analysis includes statistical measures such as the squared correlation 
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coefficient (𝑅2), the sum of square error (𝑆𝑆𝐸), root mean squared error (𝑅𝑀𝑆𝐸), F-Value, 

and Significance F.  

Table  7. Statistical measures of reduced reverse topological indices vs. entropy measures of 𝒢 = 𝑇𝐶𝑁𝐵(𝑝, 𝑞). 

Data Model 𝑹𝟐 𝑺𝑺𝑬 𝑹𝑴𝑺𝑬 𝑭 𝑺𝒊𝒈. 𝑭. 

ℛℛ𝑀1(𝒢) vs. 𝔼ℛℛ𝑀1(𝒢) 𝑦 = 1.0059 × 𝑙𝑛(𝑥) − 1.9111 1 0.000218 0.003481 3088693 1.44×10-48 

ℛℛ𝑀2(𝒢) vs. 𝔼ℛℛ𝑀2(𝒢) 𝑦 = 1.0142 × 𝑙𝑛(𝑥) − 2.4813 1 0.001218 0.008226 554889 7.37×10-42 

ℛℛ𝐻𝑀1(𝒢) vs. 𝔼ℛℛ𝐻𝑀1(𝒢) 𝑦 = 1.0136 × 𝑙𝑛(𝑥) − 3.8981 1 0.001106 0.007840 610343 3.13×10-42 

ℛℛ𝐻𝑀2(𝒢) vs. 𝔼ℛℛ𝐻𝑀2(𝒢) 𝑦 = 1.0361 × 𝑙𝑛(𝑥) − 5.2457 1 0.000373 0.019305 101788 3.13×10-35 

ℛℛ𝐹(𝒢) vs. 𝔼ℛℛ𝐹(𝒢) 𝑦 = 1.0445 × 𝑙𝑛(𝑥) − 3.5889 1 0.030014 0.040834 24386 1.2× 10-29 

ℛℛ𝐴𝐵𝐶(𝒢) vs. 𝔼ℛℛ𝐴𝐵𝐶(𝒢) 𝑦 = 0.9868 × 𝑙𝑛(𝑥) + 0.9289 1 0.00325 0.13437 207855.6 5.08×10-38 

ℛℛ𝐺𝐴(𝒢) vs. 𝔼ℛℛ𝐺𝐴(𝒢) 𝑦 = 1.0153 × 𝑙𝑛(𝑥) − 0.4164 1 0.001567 0.00933 442689.3 5.63×10-41 

ℛℛ[𝑅𝑒𝑍1(𝒢)] vs. 

𝔼ℛℛ[𝑅𝑒𝑍1(𝒢)] 
𝑦 = 0.9968 × 𝑙𝑛(𝑥) + 0.4476 1 0.000071 0.001991 9439104 6.19×10-53 

ℛℛ[𝑅𝑒𝑍2(𝒢)] vs. 

𝔼ℛℛ[𝑅𝑒𝑍2(𝒢)] 
𝑦 = 1.0060 × 𝑙𝑛(𝑥) − 0.5029 1 0.000233 0.003597 2892583 2.59×10-48 

ℛℛ[𝑅𝑒𝑍3(𝒢)] vs. 

𝔼ℛℛ[𝑅𝑒𝑍3(𝒢)] 
𝑦 = 1.0238 × 𝑙𝑛(𝑥) − 4.5410 1 0.003811 0.013293 213361.1 4.01×10-38 

 

  
𝓡𝓡𝑴𝟏(𝓖) vs. 𝔼𝓡𝓡𝑴𝟏(𝓖) 𝓡𝓡𝑴𝟐(𝓖) vs. 𝔼𝓡𝓡𝑴𝟐(𝓖) 

  
𝓡𝓡𝑯𝑴𝟏(𝓖) vs. 𝔼𝓡𝓡𝑯𝑴𝟏(𝓖) 𝓡𝓡𝑯𝑴𝟐(𝓖) vs. 𝔼𝓡𝓡𝑯𝑴𝟐(𝓖) 

  
𝓡𝓡𝑭(𝓖) vs. 𝔼𝓡𝓡𝑭(𝓖) 𝓡𝓡𝑮𝑨(𝓖) vs. 𝔼𝓡𝓡𝑮𝑨(𝓖) 
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𝓡𝓡𝑨𝑩𝑪(𝓖) vs. 𝔼𝓡𝓡𝑨𝑩𝑪(𝓖) 𝓡𝓡[𝑹𝒆𝒁𝟏(𝓖)] vs. 𝔼𝓡𝓡[𝑹𝒆𝒁𝟏(𝓖)] 

  
𝓡𝓡[𝑹𝒆𝒁𝟐(𝓖)] vs. 𝔼𝓡𝓡[𝑹𝒆𝒁𝟐(𝓖)] 𝓡𝓡[𝑹𝒆𝒁𝟑(𝓖)] vs. 𝔼𝓡𝓡[𝑹𝒆𝒁𝟑(𝓖)] 

Figure 4. Comparison of the reduced reverse topological indices and their corresponding entropy measures of 

𝒢 = 𝑇𝐶𝑁𝐵(𝑝, 𝑞). 

The logarithmic regression curve fitting statistical values of the earlier discussed 

reduced reverse topological indices versus corresponding entropy measures for the 

𝑇𝐶𝑁𝐵(𝑝, 𝑞) are shown in Table 7. 

6. Numerical and Graphical Discussion 

In this section, we have made a comprehensive analysis of various reduced reverse 

vertex degree-based topological indices and their corresponding entropies of the 

Tetracyanobenzene metal organic framework 𝑇𝐶𝑁𝐵(𝑝, 𝑞).   Based on the regression analysis 

carried out in the previous section, with reference to the values of the aforesaid indices for 

different values of 𝑝 and 𝑞 are tabulated in Tables 3 and 4, while the corresponding entropy 

values are tabulated in Tables 5 and 6.  

An increase in the values of 𝑝 and 𝑞 ensures a corresponding increase in each of the 

discussed indices and entropies. This trend is observed in the graphs in Figures 2 and 3. 

Consistent trends are observed between the considered sets of indices and entropies. Of all the 

indices, the reduced reverse atom-bond connectivity index ℛℛ𝑀3(𝒢) takes the least value, 

whereas the second reduced reverse hyper-Zagreb index ℛℛ𝐻𝑀2(𝒢) takes the greatest value. 

Similarly, of all the entropy measures, the reduced reverse geometric-arithmetic entropy 

𝔼ℛℛ𝐺𝐴(𝒢) takes the least value, whereas the reduced reverse atom-bond connectivity entropy 

𝔼ℛℛ𝐴𝐵𝐶(𝒢) takes the greatest value. Unfortunately, it is not possible to determine the entropy 

value for the third reduced reverse Zagreb index due to encountering an undefined value 𝑙𝑜𝑔  0 

when the adjacent vertices have the same degree. Further, we made the comparison of 

topological indices with their entropy measures by a logarithmic regression model, which is 

shown in Table 7. In each regression model, the value of 𝑅2 is identically equal to 1, and the 
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values of 𝑆𝑆𝐸 and 𝑅𝑀𝑆𝐸 are very low. Additionally, the values of 𝐹 are found to be very large, 

and the significance F-values are quite small. These results indicate a strong correlation 

between the discussed indices and their corresponding entropies, suggesting that the 

differences in group means are substantially greater than the variability within each group. 

Consequently, the observed differences are unlikely to be due to chance alone.  

7. Conclusion 

In this article, we derive the expressions for the closed forms of various reduced reverse 

vertex degree-based topological indices and the corresponding entropy measures of the 

Tetracyanobenzene metal-organic frameworks. Further, we have made a graphical and 

comparative analysis of these indices and the entropy measures by computing them for 

different values of 𝑝 and 𝑞. The analysis of the existing relationships between these indices, as 

well as entropy measures and the topological properties of the structure, is conducted using a 

logarithmic regression model. Based on the analysis, it is concluded that these indices and 

entropy measures are significantly correlated.  

8. Future Work 

As seen in literature, topological indices are found to have strong correlation with many 

of the structural, physical, and chemical properties of MOFs. They play a significant role in 

understanding how the MOF structures influence their properties. For example, Zagreb indices 

are seen to correlate with the stability of MOFs. Similarly, the Wiener index is useful in 

predicting the porosity of these structures.  

Taking this direction, further computational research may shed light on the significance 

of the topological indices discussed in this study in predicting the physicochemical properties 

of broader classes of MOFs by incorporating real-world chemical data for validation. 

Integrating these indices with machine learning could ensure improved computational 

efficiency, especially when dealing with large-scale datasets. 
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