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Abstract: Nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) are potent environmental pollutants 

with known mutagenic and carcinogenic properties. This study integrates molecular docking and 

quantitative structure–activity relationship (QSAR) modeling to investigate the DNA-binding potential 

and mutagenicity of 30 structurally diverse nitro-PAHs. Using the high-resolution DNA dodecamer 

crystal structure (PDB ID: 1D63), molecular docking was performed via a hierarchical Glide workflow, 

followed by MM-GBSA binding free energy calculations to refine binding affinity estimates. The top 

ligands exhibited substantial binding potential, with ΔG bind values ranging from –22.0 to –35.9 

kcal/mol, particularly favoring dinitro-substituted derivatives such as 2,7-dinitropyrene. A five-

descriptor QSAR model was developed using multiple linear regression (MLR), random forest (RF), 

Gaussian process regression (GPR), and neural networks (MLP), with MLR showing the best predictive 

accuracy (RMSE = 0.86) on a blind test set. The most influential descriptors included molecular surface 

area, polarizability, and Connolly surface parameters. In silico toxicity assessments using ProTox-III 

revealed high mutagenic potential, aryl hydrocarbon receptor activation, and blood-brain barrier 

permeability for top-scoring ligands, with variable predictions for carcinogenicity and neurotoxicity. 

Collectively, these results provide insight into the molecular determinants of DNA intercalation and 

toxicological risks associated with nitro-PAHs, providing a computational foundation for 

environmental hazard assessment and structure-based screening. 
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1. Introduction 

Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental pollutants 

formed primarily from incomplete combustion processes, such as the burning of fossil fuels, 

biomass incineration, and tobacco smoke [1–4]. These compounds are commonly found in air, 

soil, water, and sediments and enter ecosystems through industrial discharge, urban runoff, and 

atmospheric deposition [1,2]. PAHs are characterized by their lipophilicity, persistence, and 

tendency to bioaccumulate in organisms [5,6], particularly aquatic species such as fish and 

benthic invertebrates [1,7]. The toxicological concerns of PAHs stem from their ability to 

undergo metabolic activation, forming electrophilic intermediates that can covalently bind to 

DNA and proteins [8–10]. This interaction can lead to various adverse health effects, including 
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mutagenicity, teratogenicity, and carcinogenicity [8, 11, 12]. Benzo[a]pyrene (B[a]P) [13], for 

example, is a well-established carcinogen linked to cancers of the lung and gastrointestinal 

tract. Ecotoxicological studies consistently report sublethal effects of PAHs on wildlife, 

including developmental disruption, immune suppression, and reproductive toxicity [7,14,15]. 

Environmental factors, including temperature, light, and microbial communities, affect PAH 

degradation [16–19]. Moreover, transformation products such as oxygenated and nitrated 

PAHs often exhibit higher toxicity [6,8,9] and increased bioavailability compared to their 

parent compounds [20–25]. These characteristics underscore the need for thorough 

environmental and toxicological monitoring of PAHs and their derivatives. Nitro-polycyclic 

aromatic hydrocarbons (nitro-PAHs) [15,26,27] are of particular concern due to their enhanced 

mutagenic and carcinogenic potential compared to unsubstituted PAHs. These compounds 

undergo enzymatic nitroreduction and ring oxidation to form reactive species, such as 

nitrenium ions, that can bind covalently to DNA [8–10], forming stable adducts primarily at 

guanine and adenine bases. Upon metabolic activation, nitro-PAHs yield electrophilic 

metabolites that covalently bind to DNA [8, 15, 26–29], particularly at guanine residues. These 

interactions interfere with base-pairing and induce helix distortion. The binding is further 

stabilized by hydrogen bonds and π-π stacking, particularly in intercalation and minor groove 

modes. Substituent groups, such as -NO₂ and hydroxyl functionalities, influence binding by 

modifying molecular planarity and electronic distribution, which in turn affect DNA affinity 

[8, 9, 15, 266–30]. Computational and spectroscopic studies confirm that nitro-PAHs form 

energetically favorable complexes with DNA, indicating a strong potential for mutagenic 

effects [8, 30, 31]. Nitro-PAH-DNA adducts are bulky and structurally persistent, often 

resisting repair by the nucleotide excision repair (NER) pathway. These lesions can evade 

recognition by critical repair complexes, resulting in reduced excision efficiency and an 

increased likelihood of mutation during DNA replication [15, 26, 31, 32]. Given the mutagenic 

potential and structural complexity of nitro-PAH–DNA interactions, this study employs 

molecular docking to predict and characterize the binding affinities and adduct formation 

mechanisms of selected nitro-PAHs. To simulate these interactions, the crystal structure of the 

B-DNA dodecamer, with PDB ID 1D63, was selected as the receptor. This structure, which 

features a covalent adduct between DNA and benzo[a]pyrene diol epoxide (BPDE), serves as 

a representative model of bulky PAH-DNA lesions commonly associated with genotoxicity. 

The selection of this DNA template was guided by its strong biological and mechanistic 

relevance. Nitro-PAHs such as 1-nitropyrene are known to form DNA adducts structurally and 

functionally similar to those induced by BPDE, particularly at guanine residues. 

Furthermore, the high-resolution crystal structure (1.5 Å) of 1D63 [33] allows for 

accurate spatial modeling of ligand orientation and binding interactions. Mechanistically, nitro-

PAHs share the ability to engage purine bases through π–π stacking and hydrogen bonding, 

leading to local distortions of the DNA helix [30,34]. Such structural perturbations are closely 

associated with replication errors and impaired DNA repair. Using this well-studied and 

biologically meaningful DNA model, the study aims to gain a deeper understanding of how 

nitro-PAHs interact with DNA at the molecular level, providing insight into their potential to 

cause mutations and persist within living organisms. 
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2. Materials and Methods 

2.1. Molecular docking 

2.1.1. Ligand preparation and input parameters. 

A curated library of 30 nitro-substituted polycyclic aromatic hydrocarbons (nitro-

PAHs) was constructed using DataWarrior software [35]. The initial query structure, 1-

nitropyrene, served as the reference molecule for a similarity-based search within the ChEMBL 

database (Scheme 1). Compounds were selected based on a structural similarity threshold 

exceeding 90%. The molecular structures were initially obtained in 2D SDF format and 

subsequently converted into their corresponding 3D conformations. Ligand preprocessing was 

conducted using the LigPrep tool, which included the generation of potential tautomers and 

stereoisomers. The  

 
Scheme 1. Schematic overview of the integrated computational workflow employed in this study. 
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2.1.2. Hierarchical docking workflow. 

A hierarchical virtual screening protocol[36–38] was implemented using a three-stage 

Glide docking workflow to systematically evaluate ligand binding potential [39, 40]. (I) High-

Throughput Virtual Screening (HTVS): This initial phase involved rapid docking calculations 

to screen the compound library efficiently, retaining the top 90% of ligands based on 

GlideScore for further analysis. (II) Standard Precision (SP): Ligands passing the HTVS filter 

were subjected to more accurate redocking using the SP mode, with the top 90% again selected 

for progression. (III) Extra Precision (XP): The highest-ranking 20 ligands from the SP stage 

were finally docked using the XP protocol, which offers enhanced scoring accuracy and better 

discrimination of binding affinities. To optimize computational resources, post-docking 

minimization was disabled. Ligand binding poses were ranked based on Glide XP scores. 

2.1.3. Docking parameters. 

Ligand sampling was performed using the ConfGen algorithm, with each compound 

restricted to a single binding pose to reduce computational demand. Amide and Epik penalties 

were applied to refine the scoring of ligand poses, especially with respect to protonation 

accuracy. Output files were saved in either compressed ligand libraries (LIB) or Pose Viewer 

(PV) format, depending on the docking tier. 

2.1.4. MM-GBSA post-docking evaluation. 

The top 16 ligands from the XP docking phase underwent binding free energy 

estimation using (Molecular Mechanics–Generalized Born Surface Area) [41,42] via the Prime 

module. These ΔGbind calculations provided a more thermodynamically grounded assessment 

of ligand–target interactions, aiding in the identification of high-affinity candidates. 

2.2. QSAR methodology. 

In this study, a set of five molecular descriptors (selected from a list of 20) was carefully 

curated to construct quantitative structure–activity relationship (QSAR) models. These 

descriptors were selected based on their established physicochemical relevance to ligand–

receptor interactions and their ability to capture key structural and electrostatic features that 

influence docking performance. The selected descriptors collectively reflect a balance of 

molecular geometry, electronic distribution, and surface interactions—all of which are critical 

determinants in molecular recognition. Specifically, the descriptors used were: Molecular 

Surface Area (VAMP Electrostatics) – an estimate of the exposed surface area relevant for 

interaction with biological targets; Mean Polarizability (VAMP Electrostatics) – reflecting the 

molecule’s ability to redistribute electron density in response to external fields, often correlated 

with binding flexibility;  Connolly Surface Area (Atom Volumes and Surfaces) – indicative of 

the molecular envelope formed by van der Waals radii, influencing shape complementarity;  

Connolly Surface Occupied Volume (Atom Volumes and Surfaces) – assessing how much 

space the molecule physically occupies, related to steric hindrance; and  Solvent Surface 

Occupied Volume (Atom Volumes and Surfaces) – estimating the solvent-exposed volume, 

which can affect desolvation energies and thus binding efficiency. This descriptor set was 

designed to comprehensively capture both internal molecular properties and surface-level 

interactions, laying a robust foundation for predictive modeling. To initiate this pilot study, a 

focused subset of molecules from a broader dataset was used. Specifically, the first twelve 

https://doi.org/10.33263/BRIAC156.079


https://doi.org/10.33263/BRIAC156.079  

 https://biointerfaceresearch.com/   5 of 13 

 

molecules were selected to test the feasibility and performance of the modeling approach in a 

low-data regime. Training Set: The first ten results from the virtual screening were used to train 

the regression models. Test Set: The final two compounds were held out as an external blind 

test to assess generalizability. All numerical descriptors were standardized using scikit-learn’s 

[43] StandardScaler, ensuring that each feature contributed equally to model training. This step 

mitigates scale-related bias and enhances algorithm performance, particularly for methods 

sensitive to feature magnitude, such as neural networks and Gaussian processes. To explore the 

structure–activity landscape, four regression algorithms were employed, each offering unique 

strengths: 1. Multiple Linear Regression (MLR) [44]: A straightforward model providing high 

interpretability, useful for establishing linear relationships; 2. Random Forest Regressor (RF) 

[45]: An ensemble-based, non-linear model that leverages decision trees to capture complex 

patterns; 3. Gaussian Process Regressor (GPR): A probabilistic, kernel-based model capable 

of modeling uncertainty and smooth nonlinear trends; 4. Multi-layer Perceptron Regressor 

(MLP or Neural Network): A deep learning approach for capturing hierarchical nonlinearities, 

albeit more data-intensive. All models were implemented using scikit-learn and trained on the 

standardized training dataset. The performance of each model was evaluated using the Root 

Mean Square Error (RMSE) on the blind test set, providing a consistent metric for comparing 

predictive accuracy. The descriptors were selected based on their established physicochemical 

relevance to ligand–receptor interactions and their ability to capture key structural and 

electrostatic features that influence docking performance. To ensure the independence of the 

selected descriptors, we conducted a Pearson correlation analysis and calculated variance 

inflation factors (VIFs). The correlation matrix (Table 1) shows that all pairwise correlations 

were below 0.75, and VIF values were under 5, indicating low multicollinearity and justifying 

their inclusion in the regression models. 

Table 1. Docking scores (Glide XP) and MM-GBSA binding free energies (ΔG bind) of the top 15 nitro-PAH 

compounds docked to the DNA dodecamer (PDB ID: 1D63). 

Index MSA Polarizability CSA CSV Solvent Volume VIF 

MSA 1 0.52 0.48 0.6 0.41 1.88 

Polarizability 0.52 1 0.39 0.51 0.37 1.54 

CSA 0.48 0.39 1 0.65 0.54 2.03 

CSV 0.6 0.51 0.65 1 0.58 2.45 

Solvent 

Volume 
0.41 0.37 0.54 0.58 1 1.71 

3. Results and Discussion 

3.1. Molecular docking. 

Molecular docking was performed using the Glide XP protocol, followed by MM-

GBSA calculations [25] to estimate binding free energies (ΔG bind) for the top 15 nitro-PAHs; 

the results are given in Table 2.  

Table 2. Docking scores (Glide XP) and MM-GBSA binding free energies (ΔG bind) of the top 15 nitro-PAH 

compounds docked to the DNA dodecamer (PDB ID: 1D63). 

Compound Number Compound Name Docking Score MMGBSA ΔG bind 

1 8-nitropyren-1-amine -5.51977043 -23.4244272 

2 1-nitrobenzo[e]pyrene -4.75729353 -24.15642511 

3 9-nitroanthracene -4.3351906 -26.82030528 

4 2,7-dinitropyrene -4.14792742 -35.88972127 

5 2-nitropyrene -4.07344481 -31.81267185 

6 2-nitrophenanthrene -3.71812388 -29.90017116 

7 2-nitrotriphenylene -3.60911048 -29.08031532 
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Compound Number Compound Name Docking Score MMGBSA ΔG bind 

8 1-nitrotriphenylene -3.51576339 -25.94346016 

9 9-nitrophenanthrene -3.4461992 -22.00709639 

10 2-nitronaphthalene -3.2785841 -25.87095031 

11 1,6-dinitropyrene -3.16704772 -31.11637165 

12 1,8-dinitropyrene -2.74466487 -22.97647721 

13 7-nitrotetraphene -2.60242363 -29.9641917 

14 5-nitrochrysene -2.15405989 -26.55084335 

15 6-nitrobenzo[pqr]tetraphene -2.12884234 -29.24994275 

The docking scores ranged from -5.52 to -2.13 kcal/mol, indicating moderate to strong 

predicted affinities toward the DNA target (PDB ID: 1D63). MM-GBSA [23–25] results 

revealed ΔG bind values between –22.00 and –35.88 kcal/mol, further confirming the potential 

for stable ligand–DNA interactions. Among the screened nitro-PAHs (Figure 1), 2,7-

dinitropyrene exhibited the most favorable MM-GBSA binding energy (–35.89 kcal/mol), 

forming hydrogen bonds with guanine and cytosine, and stacking between base pairs via π–π 

interactions. 8-nitropyren-1-amine yielded the best Glide docking score (–5.52 kcal/mol), 

suggesting that both nitro group position and electronic characteristics influence DNA binding 

affinity. Similarly, 1-nitrotriphenylene (ΔGbind = –32.64 kcal/mol) exhibited strong 

intercalative stacking due to its planar π-system. These results underscore that substitution 

patterns and molecular planarity play key roles in optimizing interactions with the DNA minor 

groove and intercalation sites. 

 
Figure 1. Chemical structure of the top 16 docked nitro-PAH compounds. 
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These structural and energetic trends are further supported by QSAR results (Section 

3.2), where descriptors such as Connolly surface area and polarizability were found to correlate 

with docking scores and binding energy, confirming the importance of size, shape 

complementarity, and electron cloud flexibility in stabilizing PAH–DNA complexes. 

Additionally, the presence of electron-donating groups, such as an amine in 8-

nitropyren-1-amine, yielded the most favorable docking score (–5.52 kcal/mol), potentially due 

to an increased hydrogen bonding capacity in groove-binding interactions. Indeed, we observe 

such an interaction by analyzing the 2D docking pose for this compound (Figure 2). 

 

  
(a) (b) 

Figure 2. (a) 2D and 3D docking pose of 8-nitropyren-1-amine within the DNA dodecamer (PDB ID: 1D63), 

highlighting potential hydrogen bonding and π–π stacking interactions; (b) 3D binding pose of 1-

nitrobenzo[e]pyrene demonstrating intercalation between base pairs (other compounds have similar docking 

patterns). 

 

Extended π-conjugation, as seen in larger PAHs such as 1-nitrotriphenylene and 1-

nitrobenzo[e]pyrene, contributed to moderate-to-strong DNA binding affinities, likely through 

π–π stacking with nucleobases. Conversely, smaller or less planar compounds such as 2-

nitronaphthalene and 6-nitrobenzo[pqr]tetraphene displayed comparatively weaker binding, 

indicating that insufficient surface area or excessive steric bulk may hinder effective interaction 

within the DNA binding site. 

3.2. QSAR results. 

3.2.1. Predictive performance. 

The RMSE values for each model on the blind test set are summarized below (Table 

2): 

Table 2. Model comparative performances of the QSAR study 
Model RMSE 

Multiple Linear Regression (MLR) 0.86 

Random Forest 1.22 

Gaussian Process 3.41 

Neural Network 1.49 

The Multiple Linear Regression (MLR) model showed the best predictive performance 

among the tested methods, with the lowest RMSE on the blind test set. This result may be 

attributed to the relatively small dataset and the linear relationship between the selected 

descriptors and docking scores. 
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3.2.2. QSAR equation. 

The MLR model [46–48] provided the following interpretable quantitative structure–

activity relationship (QSAR) equation: 

Docking Score

= −4.0401 − 5.1384 ⋅ MSA − 2.7451 ⋅ Polarizability +  8.7586 ⋅ CSA 

+  3.4047 ⋅ CSV − 4.6601 ⋅ Solvent              (1) 

where: MSA - Molecular Surface Area; CSA - Connolly Surface Area, and CSV - 

Connolly Surface Volume. 

This equation reveals that the Larger molecular surface area and polarizability tend to 

reduce binding affinity (more negative docking scores) and that the larger Connolly surface 

area and occupied volume increase binding affinity, possibly indicating shape 

complementarity, whereas excessive solvent-accessible volume reduces docking score, 

potentially reflecting solvation effects. 

3.2.3. Predicted vs. actual values. 

As shown in Figure 3, the MLR model provided a good balance between predictive 

accuracy and interpretability when using well-chosen descriptors. In contrast, the RF and NN 

models may require larger datasets or further tuning to improve performance. The GPR model 

exhibited the highest prediction error, likely due to its sensitivity to limited data. 

 
Figure 3. Actual vs. predicted docking scores using MLR, RF, GPR, and NN models. MLR exhibits strong 

performance with the selected descriptors, whereas RF, GPR, and NN may require additional data or tuning for 

further improvement. 

3.2.4. In silico toxicity assessment. 

For the top three docked compounds—8-nitropyren-1-amine, 1-nitrobenzo[e]pyrene, 

and 9-nitroanthracene—an in silico toxicity assessment was performed using the ProTox-III 

server [49]. This analysis provided valuable insights into their safety profiles, particularly with 

regard to handling procedures, potential risks from accidental exposure, and protein binding 

interactions. The results show that all three compounds—8-nitropyren-1-amine, 1-

https://doi.org/10.33263/BRIAC156.079


https://doi.org/10.33263/BRIAC156.079  

 https://biointerfaceresearch.com/   9 of 13 

 

nitrobenzo[e]pyrene, and 9-nitroanthracene—exhibit comparable oral toxicity profiles, each 

with a predicted LD₅₀ of 750 mg/kg, corresponding to Toxicity Class 4. Mutagenicity was 

consistently predicted as active across all compounds, with high confidence scores ranging 

from 0.95 to 0.98, indicating a significant concern regarding their potential genotoxicity. 

Moreover, blood-brain barrier (BBB) permeability was predicted as active for all three (≥0.86), 

indicating their capacity to cross into the central nervous system. This is particularly 

noteworthy, as it suggests potential neurotoxic effects, despite neurotoxicity itself being 

predicted as inactive in the models. In terms of carcinogenicity, 1-nitrobenzo[e]pyrene and 9-

nitroanthracene were predicted to be active, whereas 8-nitropyren-1-amine was considered 

inactive, suggesting differential oncogenic risks among these nitro-PAHs. Activation of the 

aryl hydrocarbon receptor (AhR) was observed for all three compounds, implying possible 

dioxin-like toxicological responses, which are often associated with persistent organic 

pollutants and long-term toxic effects. Furthermore, estrogen receptor ligand binding domain 

(ER-LBD) activation and acetylcholinesterase (AChE) binding were predicted to be active 

exclusively for 1-nitrobenzo[e]pyrene and 9-nitroanthracene, indicating potential endocrine-

disrupting properties and interference with the cholinergic system. Mutually, these in silico 

predictions underscore the toxicological relevance of nitro-PAHs, not only in terms of systemic 

toxicity, but also through multi-pathway biological interactions involving genetic stability, 

hormonal signaling, and neurological function. Experimental validation through targeted in 

vitro and in vivo assays is necessary to substantiate these computational insights. 

These computational toxicity findings are in line with previous experimental evidence 

reporting strong genotoxicity and DNA adduct formation for several nitro-PAHs. For example, 

3-nitrobenzanthrone has been experimentally shown to form persistent DNA adducts and 

induce mutations in human cells, while 1-nitropyrene and related compounds have 

demonstrated significant mutagenic activity and covalent binding to guanine residues [50]. 

Additionally, binding constants in the range of 10⁴ - 10⁶ M-1 have been reported for PAH–DNA 

complexes, supporting the strong binding affinities predicted in our docking study. These 

comparisons lend further credibility to our in silico approach and highlight the biological 

relevance of the predicted toxicity profiles. 

4. Conclusions 

This study presents an integrative computational framework for evaluating the 

genotoxic potential of nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) using molecular 

docking, MM-GBSA energy estimations, QSAR modeling, and in silico toxicity prediction. 

Our findings highlight that several nitro-PAHs, particularly dinitro-substituted compounds like 

2,7-dinitropyrene, possess high DNA-binding affinities, suggesting a strong potential to form 

persistent adducts and disrupt genomic integrity. The Glide XP docking and MM-GBSA 

scoring consistently identified key structural features—such as extended π-conjugation, planar 

geometries, and polar functional groups—as critical drivers of ligand–DNA interactions. The 

developed QSAR model, particularly the multiple linear regression approach, demonstrated 

strong predictive capability even in a small-data regime, underscoring the relevance of 

carefully selected physicochemical descriptors, such as molecular surface area, polarizability, 

and Connolly surface metrics, in modeling DNA-binding propensities. Importantly, the in 

silico toxicity profiling corroborated the docking results, revealing widespread mutagenic 

potential and highlighting additional biological risks, including endocrine disruption and 

blood-brain barrier permeability. Taken together, this study underscores the utility of virtual 
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screening and predictive modeling in identifying hazardous nitro-PAHs and understanding 

their molecular mechanisms of toxicity. These insights contribute not only to the field of 

computational toxicology but also provide a valuable foundation for prioritizing compounds 

for further experimental validation, environmental monitoring, and regulatory assessment. It is 

essential to note that the current QSAR models were developed using a limited dataset of 12 

compounds, which may limit their generalizability. Future work should therefore focus on 

expanding the chemical space by including larger and more structurally diverse nitro-PAHs, 

enabling broader predictive applicability. Moreover, this approach should be extended to 

diverse DNA targets to fully map the toxicological landscape of nitro-PAHs and related 

environmental pollutants. 
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