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Abstract: Nitro-polycyclic aromatic hydrocarbons (nitro-PAHS) are potent environmental pollutants
with known mutagenic and carcinogenic properties. This study integrates molecular docking and
quantitative structure—activity relationship (QSAR) modeling to investigate the DNA-binding potential
and mutagenicity of 30 structurally diverse nitro-PAHSs. Using the high-resolution DNA dodecamer
crystal structure (PDB ID: 1D63), molecular docking was performed via a hierarchical Glide workflow,
followed by MM-GBSA binding free energy calculations to refine binding affinity estimates. The top
ligands exhibited substantial binding potential, with AG bind values ranging from —22.0 to —-35.9
kcal/mol, particularly favoring dinitro-substituted derivatives such as 2,7-dinitropyrene. A five-
descriptor QSAR model was developed using multiple linear regression (MLR), random forest (RF),
Gaussian process regression (GPR), and neural networks (MLP), with MLR showing the best predictive
accuracy (RMSE = 0.86) on a blind test set. The most influential descriptors included molecular surface
area, polarizability, and Connolly surface parameters. In silico toxicity assessments using ProTox-III
revealed high mutagenic potential, aryl hydrocarbon receptor activation, and blood-brain barrier
permeability for top-scoring ligands, with variable predictions for carcinogenicity and neurotoxicity.
Collectively, these results provide insight into the molecular determinants of DNA intercalation and
toxicological risks associated with nitro-PAHs, providing a computational foundation for
environmental hazard assessment and structure-based screening.
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1. Introduction

Polycyclic aromatic hydrocarbons (PAHSs) are widespread environmental pollutants
formed primarily from incomplete combustion processes, such as the burning of fossil fuels,
biomass incineration, and tobacco smoke [1-4]. These compounds are commonly found in air,
soil, water, and sediments and enter ecosystems through industrial discharge, urban runoff, and
atmospheric deposition [1,2]. PAHSs are characterized by their lipophilicity, persistence, and
tendency to bioaccumulate in organisms [5,6], particularly aquatic species such as fish and
benthic invertebrates [1,7]. The toxicological concerns of PAHs stem from their ability to
undergo metabolic activation, forming electrophilic intermediates that can covalently bind to
DNA and proteins [8-10]. This interaction can lead to various adverse health effects, including
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mutagenicity, teratogenicity, and carcinogenicity [8, 11, 12]. Benzo[a]pyrene (B[a]P) [13], for
example, is a well-established carcinogen linked to cancers of the lung and gastrointestinal
tract. Ecotoxicological studies consistently report sublethal effects of PAHs on wildlife,
including developmental disruption, immune suppression, and reproductive toxicity [7,14,15].
Environmental factors, including temperature, light, and microbial communities, affect PAH
degradation [16-19]. Moreover, transformation products such as oxygenated and nitrated
PAHs often exhibit higher toxicity [6,8,9] and increased bioavailability compared to their
parent compounds [20-25]. These characteristics underscore the need for thorough
environmental and toxicological monitoring of PAHs and their derivatives. Nitro-polycyclic
aromatic hydrocarbons (nitro-PAHS) [15,26,27] are of particular concern due to their enhanced
mutagenic and carcinogenic potential compared to unsubstituted PAHs. These compounds
undergo enzymatic nitroreduction and ring oxidation to form reactive species, such as
nitrenium ions, that can bind covalently to DNA [8-10], forming stable adducts primarily at
guanine and adenine bases. Upon metabolic activation, nitro-PAHs yield electrophilic
metabolites that covalently bind to DNA [8, 15, 26-29], particularly at guanine residues. These
interactions interfere with base-pairing and induce helix distortion. The binding is further
stabilized by hydrogen bonds and n-n stacking, particularly in intercalation and minor groove
modes. Substituent groups, such as -NO: and hydroxyl functionalities, influence binding by
modifying molecular planarity and electronic distribution, which in turn affect DNA affinity
[8, 9, 15, 266-30]. Computational and spectroscopic studies confirm that nitro-PAHs form
energetically favorable complexes with DNA, indicating a strong potential for mutagenic
effects [8, 30, 31]. Nitro-PAH-DNA adducts are bulky and structurally persistent, often
resisting repair by the nucleotide excision repair (NER) pathway. These lesions can evade
recognition by critical repair complexes, resulting in reduced excision efficiency and an
increased likelihood of mutation during DNA replication [15, 26, 31, 32]. Given the mutagenic
potential and structural complexity of nitro-PAH-DNA interactions, this study employs
molecular docking to predict and characterize the binding affinities and adduct formation
mechanisms of selected nitro-PAHS. To simulate these interactions, the crystal structure of the
B-DNA dodecamer, with PDB ID 1D63, was selected as the receptor. This structure, which
features a covalent adduct between DNA and benzo[a]pyrene diol epoxide (BPDE), serves as
a representative model of bulky PAH-DNA lesions commonly associated with genotoxicity.
The selection of this DNA template was guided by its strong biological and mechanistic
relevance. Nitro-PAHSs such as 1-nitropyrene are known to form DNA adducts structurally and
functionally similar to those induced by BPDE, particularly at guanine residues.

Furthermore, the high-resolution crystal structure (1.5 A) of 1D63 [33] allows for
accurate spatial modeling of ligand orientation and binding interactions. Mechanistically, nitro-
PAHs share the ability to engage purine bases through n—r stacking and hydrogen bonding,
leading to local distortions of the DNA helix [30,34]. Such structural perturbations are closely
associated with replication errors and impaired DNA repair. Using this well-studied and
biologically meaningful DNA model, the study aims to gain a deeper understanding of how
nitro-PAHSs interact with DNA at the molecular level, providing insight into their potential to
cause mutations and persist within living organisms.
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2. Materials and Methods
2.1. Molecular docking

2.1.1. Ligand preparation and input parameters.

A curated library of 30 nitro-substituted polycyclic aromatic hydrocarbons (nitro-
PAHs) was constructed using DataWarrior software [35]. The initial query structure, 1-
nitropyrene, served as the reference molecule for a similarity-based search within the ChEMBL
database (Scheme 1). Compounds were selected based on a structural similarity threshold
exceeding 90%. The molecular structures were initially obtained in 2D SDF format and
subsequently converted into their corresponding 3D conformations. Ligand preprocessing was
conducted using the LigPrep tool, which included the generation of potential tautomers and
stereoisomers. The
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Scheme 1. Schematic overview of the integrated computational workflow employed in this study.
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2.1.2. Hierarchical docking workflow.

A hierarchical virtual screening protocol[36—38] was implemented using a three-stage
Glide docking workflow to systematically evaluate ligand binding potential [39, 40]. (I) High-
Throughput Virtual Screening (HTVS): This initial phase involved rapid docking calculations
to screen the compound library efficiently, retaining the top 90% of ligands based on
GlideScore for further analysis. (1) Standard Precision (SP): Ligands passing the HTVS filter
were subjected to more accurate redocking using the SP mode, with the top 90% again selected
for progression. (111) Extra Precision (XP): The highest-ranking 20 ligands from the SP stage
were finally docked using the XP protocol, which offers enhanced scoring accuracy and better
discrimination of binding affinities. To optimize computational resources, post-docking
minimization was disabled. Ligand binding poses were ranked based on Glide XP scores.

2.1.3. Docking parameters.

Ligand sampling was performed using the ConfGen algorithm, with each compound
restricted to a single binding pose to reduce computational demand. Amide and Epik penalties
were applied to refine the scoring of ligand poses, especially with respect to protonation
accuracy. Output files were saved in either compressed ligand libraries (LIB) or Pose Viewer
(PV) format, depending on the docking tier.

2.1.4. MM-GBSA post-docking evaluation.

The top 16 ligands from the XP docking phase underwent binding free energy
estimation using (Molecular Mechanics—Generalized Born Surface Area) [41,42] via the Prime
module. These AGbind calculations provided a more thermodynamically grounded assessment
of ligand—target interactions, aiding in the identification of high-affinity candidates.

2.2. QSAR methodology.

In this study, a set of five molecular descriptors (selected from a list of 20) was carefully
curated to construct quantitative structure—activity relationship (QSAR) models. These
descriptors were selected based on their established physicochemical relevance to ligand—
receptor interactions and their ability to capture key structural and electrostatic features that
influence docking performance. The selected descriptors collectively reflect a balance of
molecular geometry, electronic distribution, and surface interactions—all of which are critical
determinants in molecular recognition. Specifically, the descriptors used were: Molecular
Surface Area (VAMP Electrostatics) — an estimate of the exposed surface area relevant for
interaction with biological targets; Mean Polarizability (VAMP Electrostatics) — reflecting the
molecule’s ability to redistribute electron density in response to external fields, often correlated
with binding flexibility; Connolly Surface Area (Atom Volumes and Surfaces) — indicative of
the molecular envelope formed by van der Waals radii, influencing shape complementarity;
Connolly Surface Occupied Volume (Atom Volumes and Surfaces) — assessing how much
space the molecule physically occupies, related to steric hindrance; and Solvent Surface
Occupied Volume (Atom Volumes and Surfaces) — estimating the solvent-exposed volume,
which can affect desolvation energies and thus binding efficiency. This descriptor set was
designed to comprehensively capture both internal molecular properties and surface-level
interactions, laying a robust foundation for predictive modeling. To initiate this pilot study, a

focused subset of molecules from a broader dataset was used. Specifically, the first twelve
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molecules were selected to test the feasibility and performance of the modeling approach in a
low-data regime. Training Set: The first ten results from the virtual screening were used to train
the regression models. Test Set: The final two compounds were held out as an external blind
test to assess generalizability. All numerical descriptors were standardized using scikit-learn’s
[43] StandardScaler, ensuring that each feature contributed equally to model training. This step
mitigates scale-related bias and enhances algorithm performance, particularly for methods
sensitive to feature magnitude, such as neural networks and Gaussian processes. To explore the
structure—activity landscape, four regression algorithms were employed, each offering unique
strengths: 1. Multiple Linear Regression (MLR) [44]: A straightforward model providing high
interpretability, useful for establishing linear relationships; 2. Random Forest Regressor (RF)
[45]: An ensemble-based, non-linear model that leverages decision trees to capture complex
patterns; 3. Gaussian Process Regressor (GPR): A probabilistic, kernel-based model capable
of modeling uncertainty and smooth nonlinear trends; 4. Multi-layer Perceptron Regressor
(MLP or Neural Network): A deep learning approach for capturing hierarchical nonlinearities,
albeit more data-intensive. All models were implemented using scikit-learn and trained on the
standardized training dataset. The performance of each model was evaluated using the Root
Mean Square Error (RMSE) on the blind test set, providing a consistent metric for comparing
predictive accuracy. The descriptors were selected based on their established physicochemical
relevance to ligand—receptor interactions and their ability to capture key structural and
electrostatic features that influence docking performance. To ensure the independence of the
selected descriptors, we conducted a Pearson correlation analysis and calculated variance
inflation factors (VIFs). The correlation matrix (Table 1) shows that all pairwise correlations
were below 0.75, and VIF values were under 5, indicating low multicollinearity and justifying
their inclusion in the regression models.

Table 1. Docking scores (Glide XP) and MM-GBSA binding free energies (AG bind) of the top 15 nitro-PAH
compounds docked to the DNA dodecamer (PDB ID: 1D63).

Index MSA Polarizability CSA Csv Solvent Volume | VIF
MSA 1 0.52 0.48 0.6 0.41 1.88
Polarizability 0.52 1 0.39 0.51 0.37 1.54
CSA 0.48 0.39 1 0.65 0.54 2.03
Csv 0.6 0.51 0.65 1 0.58 2.45
Solvent 0.41 0.37 0.54 0.58 1 171
Volume

3. Results and Discussion

3.1. Molecular docking.

Molecular docking was performed using the Glide XP protocol, followed by MM-
GBSA calculations [25] to estimate binding free energies (AG bind) for the top 15 nitro-PAHS;
the results are given in Table 2.

Table 2. Docking scores (Glide XP) and MM-GBSA binding free energies (AG bind) of the top 15 nitro-PAH
compounds docked to the DNA dodecamer (PDB ID: 1D63).

Compound Number Compound Name Docking Score MMGBSA AG bind
1 8-nitropyren-1-amine -5.51977043 -23.4244272
2 1-nitrobenzo[e]pyrene -4.75729353 -24.15642511
3 9-nitroanthracene -4.3351906 -26.82030528
4 2,7-dinitropyrene -4.14792742 -35.88972127
5 2-nitropyrene -4.07344481 -31.81267185
6 2-nitrophenanthrene -3.71812388 -29.90017116
7 2-nitrotriphenylene -3.60911048 -29.08031532
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Compound Number Compound Name Docking Score MMGBSA AG bind
8 1-nitrotriphenylene -3.51576339 -25.94346016
9 9-nitrophenanthrene -3.4461992 -22.00709639
10 2-nitronaphthalene -3.2785841 -25.87095031
11 1,6-dinitropyrene -3.16704772 -31.11637165
12 1,8-dinitropyrene -2.74466487 -22.97647721
13 7-nitrotetraphene -2.60242363 -29.9641917
14 5-nitrochrysene -2.15405989 -26.55084335
15 6-nitrobenzo[pgr]tetraphene -2.12884234 -29.24994275

The docking scores ranged from -5.52 to -2.13 kcal/mol, indicating moderate to strong
predicted affinities toward the DNA target (PDB ID: 1D63). MM-GBSA [23-25] results
revealed AG bind values between —22.00 and —35.88 kcal/mol, further confirming the potential
for stable ligand—-DNA interactions. Among the screened nitro-PAHs (Figure 1), 2,7-
dinitropyrene exhibited the most favorable MM-GBSA binding energy (—35.89 kcal/mol),
forming hydrogen bonds with guanine and cytosine, and stacking between base pairs via n—n
interactions. 8-nitropyren-1-amine yielded the best Glide docking score (-5.52 kcal/mol),
suggesting that both nitro group position and electronic characteristics influence DNA binding
affinity. Similarly, 1-nitrotriphenylene (AGuina = —32.64 kcal/mol) exhibited strong
intercalative stacking due to its planar mw-System. These results underscore that substitution
patterns and molecular planarity play key roles in optimizing interactions with the DNA minor
groove and intercalation sites.

02N
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Figure 1. Chemical structure of the top 16 docked nitro-PAH compounds.
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These structural and energetic trends are further supported by QSAR results (Section
3.2), where descriptors such as Connolly surface area and polarizability were found to correlate
with docking scores and binding energy, confirming the importance of size, shape
complementarity, and electron cloud flexibility in stabilizing PAH-DNA complexes.

Additionally, the presence of electron-donating groups, such as an amine in 8-
nitropyren-1-amine, yielded the most favorable docking score (-5.52 kcal/mol), potentially due
to an increased hydrogen bonding capacity in groove-binding interactions. Indeed, we observe
such an interaction by analyzing the 2D docking pose for this compound (Figure 2).

8-nitropyren-1-amine 1-nitrobenzo[e]pyrene

_d
(@) (b)

Figure 2. (a) 2D and 3D docking pose of 8-nitropyren-1-amine within the DNA dodecamer (PDB ID: 1D63),
highlighting potential hydrogen bonding and n—x stacking interactions; (b) 3D binding pose of 1-
nitrobenzo[e]pyrene demonstrating intercalation between base pairs (other compounds have similar docking
patterns).

Extended m-conjugation, as seen in larger PAHs such as 1-nitrotriphenylene and 1-
nitrobenzo[e]pyrene, contributed to moderate-to-strong DNA binding affinities, likely through
n—7n stacking with nucleobases. Conversely, smaller or less planar compounds such as 2-
nitronaphthalene and 6-nitrobenzo[pgr]tetraphene displayed comparatively weaker binding,
indicating that insufficient surface area or excessive steric bulk may hinder effective interaction
within the DNA binding site.

3.2. QSAR results.

3.2.1. Predictive performance.

The RMSE values for each model on the blind test set are summarized below (Table

2):
Table 2. Model comparative performances of the QSAR study
Model RMSE
Multiple Linear Regression (MLR) 0.86
Random Forest 1.22
Gaussian Process 341
Neural Network 149

The Multiple Linear Regression (MLR) model showed the best predictive performance
among the tested methods, with the lowest RMSE on the blind test set. This result may be
attributed to the relatively small dataset and the linear relationship between the selected

descriptors and docking scores.
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3.2.2. QSAR equation.

The MLR model [46—48] provided the following interpretable quantitative structure—
activity relationship (QSAR) equation:
Docking Score
= —4.0401 — 5.1384 - MSA — 2.7451 - Polarizability + 8.7586 - CSA
+ 3.4047 - CSV — 4.6601 - Solvent (D

where: MSA - Molecular Surface Area; CSA - Connolly Surface Area, and CSV -
Connolly Surface Volume.

This equation reveals that the Larger molecular surface area and polarizability tend to
reduce binding affinity (more negative docking scores) and that the larger Connolly surface
area and occupied volume increase binding affinity, possibly indicating shape
complementarity, whereas excessive solvent-accessible volume reduces docking score,
potentially reflecting solvation effects.

3.2.3. Predicted vs. actual values.

As shown in Figure 3, the MLR model provided a good balance between predictive
accuracy and interpretability when using well-chosen descriptors. In contrast, the RF and NN
models may require larger datasets or further tuning to improve performance. The GPR model
exhibited the highest prediction error, likely due to its sensitivity to limited data.

0
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5 I Actual Docking Score 1
Il Predicted (MLR)
[ Predicted (RF)
-6 I Predicted (GPR) .
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Compounds

Figure 3. Actual vs. predicted docking scores using MLR, RF, GPR, and NN models. MLR exhibits strong
performance with the selected descriptors, whereas RF, GPR, and NN may require additional data or tuning for
further improvement.
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3.2.4. In silico toxicity assessment.

For the top three docked compounds—8-nitropyren-1-amine, 1-nitrobenzo[e]pyrene,
and 9-nitroanthracene—an in silico toxicity assessment was performed using the ProTox-Il11
server [49]. This analysis provided valuable insights into their safety profiles, particularly with
regard to handling procedures, potential risks from accidental exposure, and protein binding
interactions. The results show that all three compounds—S8-nitropyren-1-amine, 1-
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nitrobenzo[e]pyrene, and 9-nitroanthracene—exhibit comparable oral toxicity profiles, each
with a predicted LDso of 750 mg/kg, corresponding to Toxicity Class 4. Mutagenicity was
consistently predicted as active across all compounds, with high confidence scores ranging
from 0.95 to 0.98, indicating a significant concern regarding their potential genotoxicity.
Moreover, blood-brain barrier (BBB) permeability was predicted as active for all three (>0.86),
indicating their capacity to cross into the central nervous system. This is particularly
noteworthy, as it suggests potential neurotoxic effects, despite neurotoxicity itself being
predicted as inactive in the models. In terms of carcinogenicity, 1-nitrobenzo[e]pyrene and 9-
nitroanthracene were predicted to be active, whereas 8-nitropyren-1-amine was considered
inactive, suggesting differential oncogenic risks among these nitro-PAHSs. Activation of the
aryl hydrocarbon receptor (AhR) was observed for all three compounds, implying possible
dioxin-like toxicological responses, which are often associated with persistent organic
pollutants and long-term toxic effects. Furthermore, estrogen receptor ligand binding domain
(ER-LBD) activation and acetylcholinesterase (AChE) binding were predicted to be active
exclusively for 1-nitrobenzo[e]pyrene and 9-nitroanthracene, indicating potential endocrine-
disrupting properties and interference with the cholinergic system. Mutually, these in silico
predictions underscore the toxicological relevance of nitro-PAHS, not only in terms of systemic
toxicity, but also through multi-pathway biological interactions involving genetic stability,
hormonal signaling, and neurological function. Experimental validation through targeted in
vitro and in vivo assays is necessary to substantiate these computational insights.

These computational toxicity findings are in line with previous experimental evidence
reporting strong genotoxicity and DNA adduct formation for several nitro-PAHs. For example,
3-nitrobenzanthrone has been experimentally shown to form persistent DNA adducts and
induce mutations in human cells, while 1-nitropyrene and related compounds have
demonstrated significant mutagenic activity and covalent binding to guanine residues [50].
Additionally, binding constants in the range of 10* - 10¢ M"* have been reported for PAH-DNA
complexes, supporting the strong binding affinities predicted in our docking study. These
comparisons lend further credibility to our in silico approach and highlight the biological
relevance of the predicted toxicity profiles.

4. Conclusions

This study presents an integrative computational framework for evaluating the
genotoxic potential of nitro-polycyclic aromatic hydrocarbons (nitro-PAHS) using molecular
docking, MM-GBSA energy estimations, QSAR modeling, and in silico toxicity prediction.
Our findings highlight that several nitro-PAHS, particularly dinitro-substituted compounds like
2,7-dinitropyrene, possess high DNA-binding affinities, suggesting a strong potential to form
persistent adducts and disrupt genomic integrity. The Glide XP docking and MM-GBSA
scoring consistently identified key structural features—such as extended n-conjugation, planar
geometries, and polar functional groups—as critical drivers of ligand—DNA interactions. The
developed QSAR model, particularly the multiple linear regression approach, demonstrated
strong predictive capability even in a small-data regime, underscoring the relevance of
carefully selected physicochemical descriptors, such as molecular surface area, polarizability,
and Connolly surface metrics, in modeling DNA-binding propensities. Importantly, the in
silico toxicity profiling corroborated the docking results, revealing widespread mutagenic
potential and highlighting additional biological risks, including endocrine disruption and
blood-brain barrier permeability. Taken together, this study underscores the utility of virtual
https://biointerfaceresearch.com/ 90f 13
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screening and predictive modeling in identifying hazardous nitro-PAHs and understanding
their molecular mechanisms of toxicity. These insights contribute not only to the field of
computational toxicology but also provide a valuable foundation for prioritizing compounds
for further experimental validation, environmental monitoring, and regulatory assessment. It is
essential to note that the current QSAR models were developed using a limited dataset of 12
compounds, which may limit their generalizability. Future work should therefore focus on
expanding the chemical space by including larger and more structurally diverse nitro-PAHSs,
enabling broader predictive applicability. Moreover, this approach should be extended to
diverse DNA targets to fully map the toxicological landscape of nitro-PAHs and related
environmental pollutants.
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