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Abstract: This study examined the effect of Sapindus rarak seed extract on the structure and
morphology of Zn.SnO. synthesized using the hydrothermal method. Sapindus rarak extract,
containing saponins, flavonoids, and phenolic compounds, was employed as an environmentally
friendly natural capping agent to replace synthetic surfactants. Based on the XRD pattern, the extract
with a concentration of 2% produced Zn.SnO. with high crystallinity, as evidenced by sharp and intense
diffraction peaks. The ZnO phase appeared at an extract concentration of 4%, indicating a compositional
change. SEM and TEM analyses revealed that Sapindus rarak extract had an effect on the morphology
of Zn>SnOs particles, resulting in spherical particles with a larger average size compared to samples
synthesized without the extract. Active biomolecules in the extract contribute to regulating particle size,
inhibiting agglomeration, and increasing material crystallinity. This study shows that Sapindus rarak
extract has considerable potential as a natural resource for the environmentally friendly synthesis of
nanomaterials. This sustainable and efficient method is optimal for a wide range of clean energy and
environmental processing applications.
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1. Introduction

Because of its special qualities, including a wide band gap (3.6 eV), elevated electron
mobility (10-15 cm?V-st), high electrical conductivity (~10* Scm™), attractive optical
characteristics, and low light absorption, zinc tin oxide, represented by the chemical formula
Zn2SnOs4, has attracted much attention [1,2]. An efficient approach to control these properties
during the synthesis process is the use of additives, such as surfactants and capping agents [4-
6]. In previous studies [4,5], the surfactants included hexadecyltrimethylammonium bromide
(CTAB) and L-tryptophan. Given the increasing environmental issues, advances in
environmentally friendly nanoparticle synthesis techniques are crucial. Plant extracts have
become a desirable alternative because they can limit, stabilize, and reduce the synthesis of
nanomaterials [7,8]. Among these extracts, several active biochemical compounds are
flavonoids, terpenoids, ketones, aldehydes, amides, and carboxylic acids. They have great
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antioxidant activity for this reason as well. Plant extracts are easy to use, economical, and non-
toxic, which are some of the benefits of plant extracts in material synthesis. These molecules
can produce chelate interactions by transforming metal oxide ions into particles of different
diameters and forms [9,10]. Particularly for the synthesis of additional metal oxide compounds,
the use of plant extracts to generate materials with favorable properties should be investigated
due to the advantages and environmentally friendly character of this method [11,12].

This study reported the use of Sapindus rarak seed extract in the synthesis of Zn2SnOs,
in line with the aim of obtaining an environmentally friendly synthesis method. Because of its
high saponin concentration, Sapindus rarak—also known as soapberry—has long been used
naturally as a detergent in small-scale businesses in Indonesia [13]. Reducing surface tension
[14,15] and acting as nanomaterial stabilizers and coatings [13,16], the seeds contain saponins
and phenol derivatives [13]. This extract helps scientists synthesize spherical Zn.SnOa
particles.

2. Materials and Methods

2.1. Materials.

Zn.SnO. was synthesized using analytical-grade reagents without additional
purification. Zinc acetate dihydrate (Zn(CH3COQ)2.2H,0, purity >99.5%) and sodium
hydroxide (NaOH) were obtained from Merck. Tin (IV) chloride (SnCls, purity 98%) was
obtained from Sigma Aldrich. Rinds of Sapindus rarak were obtained from an online market
in Situbondo, East Java, Indonesia.

2.2. Preparation of Extract.

Sapindus rarak seeds were thoroughly washed with tap water and subsequently rinsed
with demineralized water. After washing, the seeds were naturally dried for one week and then
blended using an electric blender. The blended seeds were weighed accordingly (1%, 2%, 3%,
and 4% (w/v)), and demineralized water was added to reach a total volume of 100 mL. The
mixture was heated at 70°C for 1 hour under continuous stirring. After filtration, a clean brown
solution of Sapindus rarak extract was obtained and stored in a refrigerator for further use in
Zn2Sn0a4 synthesis.

2.3. Synthesis of Zn,SnOa.

As previously reported, zinc stannate powder was prepared using a hydrothermal
process with minor modifications [17,18]. All chemical reagents were of analytical purity and
were used without further purification. Typically, 10 mL of 0.2 M zinc acetate dihydrate was
added to 10 mL of 0.1 M tin chloride under stirring (800 rpm) at room temperature for 10
minutes, resulting in the formation of a white suspension. Subsequently, 5 mL of aqueous
extract was added to the mixture under continuous stirring for 10 minutes, followed by the
addition of 20 mL of 0.4 M sodium hydroxide, maintaining a molar ratio of Zn: Sn: OH at
2:1:8. After 30 minutes of reaction, the final mixture was transferred into a Teflon-lined
autoclave (100 mL capacity) and maintained at 185°C for 16 hours. The autoclave was then
allowed to cool to ambient temperature. The resulting precipitate was collected and thoroughly
rinsed with demineralized water. Finally, the product was subsequently dried in an air oven at
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85°C for 15 hours and characterized using XRD, SEM, and TEM. A schematic representation
of the synthesis procedure is shown in Figure 1.
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Figure 1. Schematic representation of the Zn.SnO. synthesis procedure using Sapindus rarak extract.

2.4. Characterization.

The XRD patterns of the synthesized Zn.SnO. were recorded using an X-ray
diffractometer (PANanalytical X’pert PRO) with Cu Ko radiation (A = 1.5406 A) in the
diffraction angle range of 10-100°. The morphology of the synthesized Zn.SnO. was examined
using scanning electron microscopy (FEI Inspect-S50) and transmission electron microscopy
(JEM-1400). The optical absorption spectrum of the Zn.SnO. was analyzed using a UV-Vis
diffuse reflectance spectrophotometer (Thermo Scientific Nicolet iS10).

3. Results and Discussion

The XRD patterns of synthesized Zn.SnO4 with and without various concentrations of
Sapindus rarak seed extract are shown in Figure 2a. It was observed that the extract
concentration significantly affected the crystallinity and phase composition of the samples. The

higher-intensity, sharper, and narrower peaks of Zn2SnQOa obtained with the extract indicated

better crystallinity than those of Zn.SnO. synthesized without the extract. The highest
crystallinity was achieved using 2% extract, after which it decreased with increasing extract
concentration. The optimal extract concentration facilitated the formation of Zn.SnOa
nanoparticles and maintained their growth stability. However, at higher extract concentrations,
interactions between organic compounds in the extract and precursor components disrupted the
crystallization process [19]. This condition led to the formation of smaller, less regular crystals,
thereby reducing the crystallinity of Zn.SnOa. At a concentration of 4%, the Zn.SnOa peaks
gradually disappeared, replaced by ZnO peaks, suggesting that organic compounds acted as
reductants or metal ion binders. The type and concentration of components in the extract are
one of the main factors determining the formation rate, size, and shape of the obtained Zn.SnO4
[20]. Bioactive compounds in an appropriate concentration form a complex structure with Zn*
and Sn* ions, resulting in Zn.SnO. as an intermediate compound before decomposing and
recrystallizing to form Zn.SnO.4. However, excessively high concentrations may interfere with
the formation of the ZnSn(OH)s complex, preventing the formation of Zn.SnO. [18,21,22].
This transition altered the X-ray diffraction pattern, leading to the dominance of the ZnO phase
and a reduced presence of Zn2SnOs in the material [23]. Up to a 3% extract concentration, no
peaks corresponding to other compounds were observed, indicating that the obtained Zn.SnO4
was of high purity. All peaks from the synthesized Zn.SnO4, both with and without the extract,
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were indexed perfectly to a face-centered cubic spinel Zn.SnO. structure with the space group
Fd-3mS. These peaks corresponded to JCPDS data number 01-073-1725. The Le Bail
refinement study further confirmed the samples' purity, providing a more detailed profile of Zn

2Sn04 and its crystallinity (Figure 2b). As shown in Figure 2b, the computed (red line) and

observed (black circles) XRD patterns exhibited a high degree of agreement, as evidenced by
the low-reliability factor values and minimal differences in the difference plot (green line)
(Rp=5.84, Ruwp=7.37, ¥?>=0.84). To examine the effect of the extract on crystallinity, the
crystallinity degree and crystallite size of the synthesized Zn.SnO. using the Scherrer formula
were determined, as listed in Table 1. The results indicated that the extract significantly affected
the crystallinity and phase composition of Zn.SnOa.
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Figure 2. XRD pattern of Zn.SnOs using Sapindus rarak extract: (a) XRD patterns with varying extract
concentrations; (b) XRD Le Bail refinement for the sample prepared with 2% extract.

Table 1. Crystallinity degree and crystallite size of samples prepared with various quantities of Sapindus rarak

extract.
Quantity of extract (%0) Phase Degree of crystallinity (%) Crystallite size (nm)
0 Zn2Sn0g4 23.61 9.09
1 Zn2Sn0g4 24.76 9.66
2 Zn2Sn0g4 29.84 11.27
3 Zn2Sn04 20.75 8.65
4 ZnO 18.18 7.63

Furthermore, the Le Bail refinement method was applied to the XRD data with varying
quantities of extract to confirm its effect on the structure of the obtained Zn.SnQOs, as shown in
Table 2. Based on the refined data, the extract variation affected the lattice parameter values of

all the obtained Zn2SnO4 samples. However, the Zn.SnO. structure remained unchanged, as
indicated by the consistent parameter values corresponding to the Fd-3mS space group and

cubic crystal system. Changes in lattice parameter values reinforced the extract’s role in the

nucleation, growth, and stabilization of Zn2SnOa, resulting in distinct a, b, and ¢ values for
each extract variation [17,19,24].
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Table 2. Lattice parameters of Zn.SnO. prepared using different extract concentrations and analyzed via the Le
Bail refinement method.

Quantity of Space arou Crystal 7 Lattice parameter

extract (%) pace group system a (A) b (A) c(Ad) V (AY)
0 Fd-3mS Cubic 8 8.678 8.678 8.678 653.6
1 Fd-3mS Cubic 8 8.673 8.673 8.673 652.5
2 Fd-3mS Cubic 8 8.675 8.675 8.675 652.9
3 Fd-3mS Cubic 8 8.680 8.680 8.680 653.9

Although the exact mechanism by which the extract affected metal oxide nanoparticle
synthesis has not been fully understood, existing literature suggests that the biochemicals
present in the Sapindus rarak extract, particularly saponin as the main component, play a
crucial role in Zn.SnO4 nanoparticle formation [25,26]. Saponins and other compounds, such
as alkaloids and terpenoids, contain active polar functional groups like carboxyl (-COOH),
carbonyl (-C=0), amino (-NH), and hydroxyl (-OH) [21]. These bioactive compounds work
synergistically to bind metal oxide ions through oxygen and other active sites, facilitating well-
defined interactions. This process helps prevent particle agglomeration and promotes higher
crystallinity in the synthesized Zn.SnO4 [22,27]. The presence of saponins in the extract was
confirmed through FTIR analysis, as evidenced by the absorption peak at 1636 cm™,
corresponding to the C=C stretching vibration originating from the aglycone in saponins (see
Figure 3) [13,28]. Additionally, a broad peak at 3294 cm indicated the stretching vibration of
OH groups. The similar absorption peaks observed across all extract variations confirmed the
presence of the same bioactive compounds.

S. rarak 4%

S. rarak 3%

S. rarak 2%

Transmittance (%)

S. rarak 1%

OH

4000 ' 35l00 ) 30l00 ' 25I00 ' 20'00 ' 1 5'00 ' 1 0l00
Wavenumber (cm™)
Figure 3. FTIR analysis of Sapindus rarak extract with varying quantities.

The morphology and size of the as-prepared Zn.SnO4 were investigated using SEM and
TEM (Figure 4). The SEM images show that the Zn.SnO. particles synthesized without the
extract were agglomerated into irregular shapes (Figure 4a,b). However, TEM analysis
confirmed that these particles exhibited an octahedron-like structure with an edge length range
of 93-198 nm, with an average of 138 + 38 nm as measured using ImageJ 1.52a software
(Figure 4e). In contrast, the use of 2% extract led to a different outcome: particles were
aggregated yet well dispersed, as shown in Figure 4c,d. TEM analysis further revealed that
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Zn>SnOs particles transformed into a spherical shape with a diameter range of 49-305 nm, with
an average of 205 + 86 nm (Figure 4f).

Aggregation of unmodified Zn.SnO4 nanoparticles could reduce their effectiveness in
sensor and catalysis applications. However, the spherical shape of the Sapindus rarak extract
prevented agglomeration and increased the material's active surface area and conductivity. This
structural modification could improve the effectiveness of interactions and enhance the
performance of materials in applications that rely on surface properties and reactivity [29].
Because different materials have different physicochemical properties, different particle sizes
can adversely affect their performance and reproducibility. Scalability, environmental
interaction, stability, and efficiency are all affected by this variability. Tight control of the
synthesis process is necessary. Thus, techniques such as particle fractionation or coating
materials should be applied to reduce particle size distribution and ensure more stable, better-
performing performance [30].

These findings highlight the significance of the extract for altering the form of Zn>SnOa.
During the synthesis of metal and metal oxide nanoparticles, the biomolecules in the extract
are supposed to be a cover and a reducer. These biomolecules bind and immobilize metal ions
during synthesis to generate nanoparticles of different sizes and shapes [27,31]. On the other
hand, it is believed that the primary trigger of this morphological change in Sapindus rarak is
rarasaponin, the main chemical present there. An important element in the formation of
spherical Zn.SnO4 in Sapindus rarak extract is the stabilizing and reducing agent rarasaponin.
The stabilizing effect of the saponin ensures a consistent particle size distribution and helps
prevent particle clumping, thereby enhancing material reactivity and active surface area [25].
As reducing agents, saponins transform metal ions into oxide compounds, helping to produce
controlled Zn.SnO4 nanoparticle crystals. The synergy between these two mechanisms leads to
the development of Zn.SnO- materials that exhibit superior quality and improved performance
in various applications, such as energy storage, sensors, and photocatalysis [32].

Figure 4. (a,b) SEM images of Zn.SnO. prepared without extract; (c,d) SEM images of Zn.SnO. prepared using
2% extract; () TEM images of Zn.SnO. prepared without extract; (f) TEM images of Zn.SnO. prepared using
2% extract.
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Furthermore, the researchers investigated the effect of varying extract concentrations
on Zn.SnO+ morphology, as illustrated in Figure 5. No significant changes in grain size and
particle shape were observed when using extracts at concentrations of 1%, 3%, and 4%. These
results indicated that a 2% extract concentration was optimal for producing Zn.SnO. with well-
defined grain boundaries. Table 3 summarizes the effects of different extract concentrations on
the size and morphology of the synthesized Zn.SnO. and compares them with commercial
surfactants. Clearly, the Sapindus rarak extract has a significant impact on the formation of
Zn2SnO4, which could further have great potential to replace the role of traditional surfactants
as an eco-friendly and sustainable material. Different results were shown by previous research
using extracts of Impatiens balsamina L. leaves and Garcinia mangostana fruit peels, which
produced Zn.SnO. in octahedral form with edge lengths of 160—-350 nm and 600-900 nm,
respectively [17,18]. This finding confirms that varying the extract components produces
materials with specific shapes and sizes.

“ai . ’

Figure 5. SEM images of as-prepared Zn.SnO. with various extract concentrations: (a) 1%; (b) 3%; (c) 4%.

Table 3. Summary of as-prepared Zn.SnO. characteristics with various extract concentrations and its
comparison with commercial surfactants.

Type of surfactant Morphology Particle size (nm) Ref
0% Agglomerated, octahedron-like 138 + 38
. 1% Agglomerated, irregular - .
Sapindus rarak 2% Well-defined grain size, spherical 205 + 86 This research
3% Agglomerated, irregular -
CTAB Well-defined grain size, cubic 133-332 [4]
L-tryptophan Well-defined grain size, octahedral ~300 [33]
L-tryptophan Well-defined grain size, cubic 100-150 [5]
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After conducting XRD, SEM, and TEM analyses on all samples, the sample prepared
with 2% extract demonstrated the most favorable characteristics. Consequently, this sample
was chosen for further exploration of its optical properties. The optical properties of Zn.SnO4
prepared with and without 2% extract were evaluated using a UV-Vis DRS spectrophotometer

(Figure 6). The band gap value was determined by the following equation:
Eg=>="2eV 1)
Notes: Eg stands for the band gap energy (eV), A for wavelength (nm), ¢ for light speed
(3x 108 ms™), and h for Planck’s constant (6.626 x 107 Js). Calculations revealed that ZnSnOs4
made with 2% extract had a band gap value (3.26 eV) lower than that of samples without extract
(3.41 eV). The electronic structure of this sample changed with increasing crystallinity and
particle size, and was closely associated with a decrease in the band gap [34]. Better light

absorption in this sample suggests that photocatalytic uses would benefit from it.
14

extract 2%
1.24 —— without extract

1.0 H

0.8 1

0.6 -
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Figure 6. UV-Vis DRS spectra of Zn.SnO4 prepared with and without 2% extract.

0.0

The remarkable spherical character of Zn.SnO4 makes it appropriate for use in fields
covering energy storage, sensors, and photocatalysis. The spherical form increases sensitivity,
performance, interaction with target molecules, and active surface area of the material. Higher
crystallinity improves ideal conductivity, which is critical for applications including energy
storage and photocatalytic development. The spherical form of Zn.SnO4 lowers clumping,
improving performance and stability in surface-oriented and reactivity applications. This raises
the material's stability and efficiency progressively [35].

There is a major challenge to be solved when using plant extracts to make large-scale
materials. Some of the most significant problems are the lack of access to raw materials,
processing inefficiencies, variations in extract composition, and the challenge of scaling up the
technology to meet industrial needs [36]. Solutions to these problems include establishing
alternative sources of raw materials, optimizing synthesis processes, and using environmentally
friendly technologies [37]. In addition, the scalability and reproducibility of green synthesis
methods are hampered by variables in raw materials and uncertainties in process conditions,
which can affect the consistency of results. Quality control and the complexity of technology
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transfer hinder industrial-scale implementation. In addition, rising production costs due to
large-scale operations continue to hamper method optimization [38].

4. Conclusions

The effective green synthesis of Zn.SnOs was demonstrated in this study using the bark
of Sapindus rarak as a covering material. XRD analysis showed that the Sapindus rarak extract
retained its cubic structure and increased the crystallinity of Zn.SnOa. After adding 2% of the
extract, SEM and TEM analysis showed that the agglomerated octahedral Zn.SnOa
nanoparticles formed without the extract were successfully converted into well-defined
spherical particles with distinct grain boundaries. The Zn.SnO. particles made without the
extract and with the extract had sizes of 138 £ 38 nm and 205 + 86 nm. These findings
demonstrated that the Sapindus rarak seed extract significantly improved the structural and
morphological characteristics of Zn.SnO., making it more suitable for various applications.
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