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ABSTRACT 
 Cytisine, a plant alkaloid available as an effective treatment for smoking dependence, is used to target 
receptor (nAChR). Direct detection of nAChR
antismoking action and improve clinical treatment. However, visualization of cytisine targeting 
assaying molecular interactions noninvasively. For use in clinical imaging techniques, the cytisine molecule
modification to be visualized in vivo. Herein, we review the current development of modified cytisine probes for detection using positron 
emission tomography (PET), single photon emission computed tomography (SPECT) and computed tomograp
cytisine using magnetic resonance imaging (MRI) is also discussed.
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1. INTRODUCTION 
 Advances in in vivo clinical techniques such as positron 
emission tomography (PET), single photon emission computed 
tomography (SPECT), computed tomography (CT) and magnetic 
resonance imaging (MRI) can provide internal images of neuronal 
structure and function. The clinical techniques (PET, SPECT, CT, 
MRI) can be used to obtain images before and after treatment to 
evaluate drug localization and efficiency in diseased tissue. These 
techniques provide high-resolution and high-sensitivity detection. 
To obtain images using PET, SPECT and CT, radiotracer drugs 
radiolabeled with markers have to be synthesized. The basic 
requirements for a radiotracer are (1) rapid preparation; (2) 
binding affinity for the targeted receptor; (3) penetration through 
the intact blood–brain barrier; and (4) efficient 
accumulation. Detection of the distribution of drugs 
remains a major difficulty. The appearance of the same molecules 
in healthy and diseased brain tissues makes discrimination 
difficult. In addition to the clinical techniques 
magnetic resonance imaging (MRI) has been gaining in popularity 
for the detection and imaging of in vivo drug targeting, 
distribution and drug metabolism. MRI has offered additional 
tools for drug discovery and development, evaluatio

 

2. EXPERIMENTAL AND METHODS 

 The research discussed here reflects the use of cytisine

database. 

3. RESULTS: IN VIVO IMAGING STUDIES

 The nicotinic subunit α4β2 of nAChR expressed in the 

human brain was imaged and reported using PET and SPECT 

A nine α (α2–α10) and three β (β2–β4) subunits have been identified 

that are distributed throughout the central nervous system (CNS

[4,5]. Among the several nAChR subtypes in the CNS, the 

homomeric α7 and heteromeric α4β2 subtypes are predominant in 

the brain. These subtypes are best characterized in terms of their 

ligand selectivity and they can be studied by means of binding 
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emission tomography (PET), single photon emission computed 
tomography (SPECT), computed tomography (CT) and magnetic 
resonance imaging (MRI) can provide internal images of neuronal 

echniques (PET, SPECT, CT, 
MRI) can be used to obtain images before and after treatment to 
evaluate drug localization and efficiency in diseased tissue. These 

sensitivity detection. 
ECT and CT, radiotracer drugs 

radiolabeled with markers have to be synthesized. The basic 
requirements for a radiotracer are (1) rapid preparation; (2) 
binding affinity for the targeted receptor; (3) penetration through 

(4) efficient in vivo 
accumulation. Detection of the distribution of drugs in vivo 
remains a major difficulty. The appearance of the same molecules 
in healthy and diseased brain tissues makes discrimination 

 mentioned above, 
magnetic resonance imaging (MRI) has been gaining in popularity 

drug targeting, bio- 
metabolism. MRI has offered additional 

tools for drug discovery and development, evaluation of 

pharmacokinetic properties and monitoring drug efficacy. 
imaging of drug delivery, release and subsequent monitoring of 
the therapeutic outcomes can greatly aid and enhance treatment.
Our interest is in the imaging of cytisine targeting of the
acetylcholine receptor (nAChR) which is a ligand
channel crucial to normal and diseased brain physiology. The 
nAChR is a therapeutic target in a wide range of pathological 
conditions such as Parkinson’s disease, neuropathic pain and 
nicotine addiction [1]. Using PET, CT or SPECT 
ligands of the nAChR have to be labeled with radiotracers such as 
carbon-11 or fluorine-18. The syntheses of cytisine
time sensitive and must be accomplished without radioactive
dilution with stable isotope. In this review, insights in nAChR 
targeting with radiolabeled cytisine is discussed. Briefly, cytisine, 
an alkaloid from the plant Laburnum anagyroides Med
laburnum L., Fabaceae), has been classified as a selective
efficacy partial agonist of α4

Several syntheses of radiolabeled cytisine derivatives for image 
monitoring of distribution and targeting has been achieved and are 
described in this review.  

reflects the use of cytisine and in vivo imaging techniques. The data

IMAGING STUDIES 

of nAChR expressed in the 

using PET and SPECT [4]. 

) subunits have been identified 

that are distributed throughout the central nervous system (CNS) 

Among the several nAChR subtypes in the CNS, the 

subtypes are predominant in 

the brain. These subtypes are best characterized in terms of their 

ligand selectivity and they can be studied by means of binding 

techniques: [3H]cytisine or [3H]nicotine can label α

[125I]α-bungarotoxin or [3H]me

α7nAChR. Cytisine is a partial agonist of the α

and has been used as a tritiated

function. The current known radiotracer probes are 

FA85380 for PET [6,7] and 

Following intravenous injection of N

1), uptake in a baboon brain was studied and showed an uptake 
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Cytisine, a plant alkaloid available as an effective treatment for smoking dependence, is used to target the nicotinic acetylcholine 
help to understand the mechanism of cytisine 

in vivo requires suitable techniques for 
assaying molecular interactions noninvasively. For use in clinical imaging techniques, the cytisine molecule requires chemical 

. Herein, we review the current development of modified cytisine probes for detection using positron 
emission tomography (PET), single photon emission computed tomography (SPECT) and computed tomography (CT). The detection of 

mission Tomography, monitoring. 

pharmacokinetic properties and monitoring drug efficacy. In vivo 
imaging of drug delivery, release and subsequent monitoring of 
the therapeutic outcomes can greatly aid and enhance treatment. 
Our interest is in the imaging of cytisine targeting of the nicotinic 
acetylcholine receptor (nAChR) which is a ligand-gated ion 
channel crucial to normal and diseased brain physiology. The 
nAChR is a therapeutic target in a wide range of pathological 
conditions such as Parkinson’s disease, neuropathic pain and 

Using PET, CT or SPECT in vivo, cytisine 
ligands of the nAChR have to be labeled with radiotracers such as 

18. The syntheses of cytisine radioligands is 
time sensitive and must be accomplished without radioactive 
dilution with stable isotope. In this review, insights in nAChR 

cytisine is discussed. Briefly, cytisine, 
Laburnum anagyroides Med., (Cytisus 

), has been classified as a selective, low-

4β2 subunit of the nAChR [2,3]. 
Several syntheses of radiolabeled cytisine derivatives for image 
monitoring of distribution and targeting has been achieved and are 

data was collected from the PubMed 

H]nicotine can label α4β2nAChR, and 

H]methyllycaconitine is used to label 

nAChR. Cytisine is a partial agonist of the α4β2 nAChR subtype 

and has been used as a tritiated radioligand to probe nAChR 

function. The current known radiotracer probes are 18F-2-

and 123I-5-A85380 for SPECT [8,9]. 

Following intravenous injection of N-[11C] methylcytisine (Figure 

1), uptake in a baboon brain was studied and showed an uptake 
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concentration different from blood radioactivity. In vivo binding of 

[11C] appeared different from in vivo binding of [3H] cytosine [10]. 

9-(fluorophenyl)cytisine derivatives were obtained in a Suzuki 

coupling of 4-fluorobenzeneboronic acid and 9-bromo-N-Boc 

cytisine [11, 12, 13]. Decarbonylation of this labeled aldehyde 

with Wilkinson catalyst afforded 4-[18F] fluorobromobenzene. As 

compared to homoaromatic and aliphatic nucleophic 

radiofluorinations, nucleophilic substitution of a nitro group by a 

fluoride [18F] in the pyridine series appears to be a highly efficient 

method for the synthesis of 18F-radiotracers of high specific 

activity [14]. The cytisine radiotracer was formed in one step from 

the corresponding nitro derivative. Nitropyridine [15] and 9-(2-

fluoro-5-pyridinyl)cytisine [16], were prepared by a Stille 

coupling of iodocytisine [17]. Another reaction to generate 

radiotracer was cytisine with fluoroiodobenzene [18]. Allain 

Barbier and coworkers demonstrated the possibility of carrying 

out the reaction of cytisine with 4-[18F]fluorobromobenzene 

(Figure 2) [19].  

N

N
H

O

11CH3I +

N

N

11CH3

O

 
Figure 1. Radiosynthesis of [11C] Methylcytisine (1b) using cytisine (1a). 

 
Figure 2. Synthesis of 9-(4-[18F]fluoropyridinyl) cytisine (2c) where R = an aliphatic group. 

 
 The limited number of in vivo MRI papers related to drug 

delivery to the brain is surprising low with respect to the broad 

availability and capability of this in vivo method. In a study by 

Chefer and coworkers, cytisine (1 mg/kg) was subcutaneously 

injected into the blood stream and binding of cytisine to the 

nAChR was detected by MRI which imaged the spatial 

distribution of cytisine in brain [20]. Using co-registered 

MRI/PET images, Allen et. al (1997) identified densities of 

nAChR in the brain. The uptake of radiotracer was detected and 

showed dysfunction of brain using MRI [21]. Abnormalities of the 

nAChR in autism were also detected using the radioligand, 6-

chloro-3-((2-(S)-azetidinyl)methoxy)-5-(2-fluoropyridin-4-yl) 

pyridine using PET/MRI imaging in vitro and in vivo. Estimated 

binding potential values in different brain regions which 

characterize the specificity of receptor binding of radiotracer have 

been provided [22]. In another study, nAChR occupancy in the 

human brain was detected using varenicline (0.5 mg) which is a 

derivative of cytisine, commonly prescribed for smoking 

cessation. This finding demonstrates that a low dose of varenicline 

saturates α4β2nAChR in the human brain [23]. Functional mapping 

using imaging techniques such as functional magnetic resonance 

imaging (fMRI) measure the hemodynamic response of the brain 

in relation to drug activity [24]. In another study, decreased 

acetylcholine levels in 3H-cytisine-labeled nicotinic α4β2 receptors 

was studied by PET and MRI [25]. The binding of [3H]cytisine in 

rat brain homogenates was examined and showed 60-90% total 

binding at all concentrations examined up to 15 nM. The nicotinic 

cholinergic agonists nicotine, acetylcholine, and carbachol 

compete with high affinity for [3H]cytisine binding sites, whereas 

among nicotinic receptor antagonists only dihydro-beta-

erythroidine competes with high affinity. Comparison of binding 

in several brain regions showed that [3H]cytisine binding is higher 

in the thalamus, striatum, and cortex than in the hippocampus, 

cerebellum, or hypothalamus. The pharmacology and brain 

regional distribution of [3H]cytisine binding sites are those 

predicted for neuronal nicotinic receptor agonist recognition 

sites[25]. The high affinity and low nonspecific binding of 

[3H]cytisine makes it a useful ligand for studying nAChR.  

 
4. CONCLUSIONS 
 This review has shown that cytisine is molecule with a 
unique and synthetically and functionally challenging structure 
which can bind to the α4β2 subunit of nAChR. During the past 
century, in particular in the last two decades, enormous progress 

has been made in understanding the chemistry of cytisine. The 
introduction of radionuclei to the structure of cytisine markedly 
improved the monitoring of drug in vivo.  
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