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ABSTRACT 
A simple formalism is suggested, to calculate the most likely configuration of a finite polymer, between two surfaces on which the 
monomers can adsorb. It is shown that at large adsorption energies for monomers on surfaces, the polymers is mostly collapsed on one 
surface and very few bridges between surfaces are created, therefore the bridging interaction is weak. On the other hand, at very low 
adsorption energies, although there are more bridges formed, the long-range interactions between surfaces are also weak. The optimal 
adsorption energy, at which the long-range attractive force between surfaces has a maximum, is calculated as a function of separation 
distance between surfaces, for a solution of dilute adsorption polymers, using the assumptions that the monomer-monomer and 
monomer-solvent interactions can be neglected. 
Keywords: polymer brushes, adsorbing polymers, bridging interactions, random walk, first return.   

1. INTRODUCTION 
Grafted polymer brushes have been often used to 

stabilize colloidal dispersions, because of the steric repulsion that 

develops when two brushes are overlapping [1]. However, if the 

monomers are adsorbed on the surfaces, the opposite effect might 

also occur – because a polymer “bridge” may reach the other 

surface and therefore generates attraction [2]. This “bridging” 

interaction has been already used to induce flocculation of 

colloidal particles in water purification systems [3], and might also 

play a role in various biological processes, such as the attachment 

of biological cells on foreign surfaces. Because bridging requires 

interdigitation of brushes, it is more difficult to understand it in 

terms of simple theoretical models, than the steric interaction.  

The lattice model of Scheutgens and Fleer [4] for the 

adsorption of a polymer molecule on a single plate have been 

extended to the attractive interaction between plates by Li and 

Ruckenstein [5]. The self-consistent field theory (for adsorption on 

one plate) of Varoqui [6] has been used to calculate the bridging 

interactions between two plates by Podgornik [7], and was 

extended to polyelectrolytes by Borukhov et al. [8] Additional van 

der Waals interactions have been accounted for, in this framework, 

by Huang and Ruckenstein [9]. Whereas these self-consistent field 

theories can provide a general description of the system (e.g. the 

monomer distribution in overlapping brushes or the forces 

between plates), they cannot provide microscopic information 

(such as the number of bridges formed, and their dependence on 

the monomer-surface interaction). 

The approximation of a polymer confined between walls 

as a random walk on a lattice is usually treated in a matrix 

formalism suggested by DiMarzio and Rubin [10], which allows 

one to calculate the fraction of loops, bridges and trains, and 

consequently the polymer-mediated interaction between plates as 

functions of the separation between plates and the adsorption 

energy. It was later shown [11] that the interaction between plates 

depends critically on the value of the adsorption energy,
kT

A
c  , 

with A being the adsorption energy of a Kuhn segment on the 

surface, k the Boltzmann constant and T the absolute temperature. 

If  < c, the interaction between plates was shown to be repulsive 

(because of the repulsion generated by the entropic confinement of 

the polymer), at  = c there is no interaction, whereas for  > c 

the attraction increases monotonically with decreasing plate 

separation (the formalism does not take into account the steric 

repulsion due to monomer volume exclusion effect). When  is 

large, the attraction is actually decreased, because the polymer 

collapses on one surface and less bridges are formed. The purpose 

of this paper is to suggest an alternative approach, in which the 

partition function of the system is approximated by the most likely 

configuration via a minimization procedure, which was employed 

recently for the adsorption of a polymer on a single surface.12 The 

dilute polymer is approximated by an 1D non-interacting random 

walk starting on one surface, for which the probabilities of 

reaching the other surface or returning to the initial surface can be 

obtained as functions of the number of steps (the size of the 

bridges and loops, respectively). It is shown that the optimal 

adsorption energy for Kuhn segments (which maximize the 

attraction between plates) depends on the plate separation, and can 

be easily calculated. 

2. THEORETICAL MODEL 
The polymer is considered composed of Kuhn segments, 

that can have orientations independent of each other, and the 

segment distribution for non-interacting segments is provided by a 

random walk. Furthermore, any configuration of a polymer can be 

described by a combination of a number of nli loops (random 

walks that returns to the same surface from which they departed 

after “i” steps), nbi bridges (random walks that reach the opposite 

surface after “i” steps) and one tail (a random walk that ends up 
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without reaching any surface). The partition function of such a 

polymer is therefore given by: 
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where the sum over “j”, that runs over all the N Kuhn segments is 

replaced by a sum over all possible configurations of nli loops, nbi 

bridges and one tail, compatible with a polymer composed of N 

Kuhn lengths. 

The energy U associated with the configuration energy 

should account for the interactions between monomers and 

surfaces, monomers and monomers and monomers and solvent. A 

mean field approximation, in which a minimum energy is 

associated with each individual loops, tails and bridges was 

proposed recently [12,13]. However, if the solvent is neutral and 

the polymer solution dilute, the largest contribution to the energy 

comes from the interactions between monomers and surfaces, 

which can be calculated exactly: 

   11],[   S
i

iinbnl nAnbnlAU
ii

 (2) 

where one considers that the interaction energy between segments 

and surface is equal to –A if the segment is adsorbed on the 

surface and zero otherwise, the sum is over the number of loops 

and bridges that contain “i” segments, and nS is the total number 

of loops and bridges. 

The probability for a “loop” or a “bridge” to occur in a 

configuration, when there are two parallel surfaces at a distance of 

D Kuhn segments (where D is an integer) and the interaction 

energy U=0, is provided by the probability that a random walker, 

that departs from a surface, will return to the same surface or reach 

the opposite one after “i” steps, without having reached any of the 

two surfaces before. A random walker starting at a surface makes 

the first step away from the surface, and then either returns to the 

initial surface after 2, 4, 6…steps or reaches the other surface after 

D, D+2, D+4 steps, where the number of steps should be smaller 

than the length N of the polymer (a random walk that after N steps 

does not reach any surface is a “tail”). 

The probabilities of the “first return” to the origin after “i” 

steps of a random walk, that start at a distance of c steps from the 

origin have been calculated by Chandrasekhar for both a reflecting 

and an absorbing wall [14]. The presence of the second surface at 

a distance D (on which the walker can be also adsorbed) 

complicates the problem, although it was shown long ago by 

Huygens that the probability of reaching either wall (regardless of 

the number of steps) is inverse proportional to the distance to the 

wall (the “gambler’s ruin” problem) [15]. The probability of 

reaching for the first time a surface at a distance D, without having 

reached the surface at 0, can be calculated as follows [15]. 

Assuming that the probability of a step forward is equal to 

the probability of a step backward, the probability to reach a point 

at a distance c after i+1 steps is provided by : 
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By multiplying with a variable 
1iz and summing over “i”, 

one obtains: 
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When “c” represents the starting point of the walk, the 

generating function G of the probabilities to reach the surface at D 

in “i” steps for the first time, without returning to the origin, obeys 

the boundary conditions: 

  1, DzG   (5a) 

  00, zG   (5b) 

which simply state that a walker starting at D always reaches first 

the surface at D and never reaches first the surface at 0. The 

solution of Eq.(4) subject to the boundary conditions (5) is unique, 

and provided by:13  
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The probability that a random walker starting from a 

surface to reach the other surface after “i” steps, hence to form a 

bridge (since the first step is always away from the surface), is 

therefore given by:  
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and the probability of first return to the origin, hence forming a 

loop, by:  
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where D represents the minimum number of steps required to 

reach the opposite surface (the distance between surfaces, 

measured in Kuhn lengths). These probabilities can be calculated 

as usual, by expanding in series the generating functions from Eqs. 

(7a and 7b) and identifying the terms of z powers. In Figure 1, the 

probabilities to return to the initial surface or to reach the other 

surface are plotted for the first 1000 steps, for a separation D 

between plates of 100 Kuhn lengths. 

 
Figure 1. Probabilities of first return to the surface (loops) / first reaching 

the other surface (bridges) after “i” steps, for a non-interacting random 

walk, for various separation distances D between surfaces, between 4 and 

100 Kuhn lengths (in steps of 2 Kuhn lengths). 
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The partition function becomes: 
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subject to the constraint that the sum of the segments in the loops, 
bridges and in the tail to be equal the total number N of the Kuhn 
segments of the polymer:  

  Ninbinl
i

ii    (9) 

where the values i < N belong to a loop or bridge and the values i 
> N to a tail (walks that need more than N steps to reach a 
surface). 

The equations for the most likely configuration are 
provided by the derivative of the logarithm of the partition 
function Eq.(6) subject to the constrain (7), with respect to all nli 
and nbi:  
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After employing the Sterling approximation, ln(n!)=nln(n)-n, 

Eqs.(10) become : 
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where  is a Lagrange multiplier, which can be obtained from the 
condition that the sum over all possible i values to be equal to nS:  
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which can provide . Once  is known, nS can be determined from 
the constrain Eq.(9).  

The terms 
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the new probabilities of loops and bridges formation, in the 

presence of short-range (adsorption) interactions between 

monomers and the surface. They are plotted in Figure 2, for 

D=100, and various adsorption energies -A. 

 
Figure 2. Probabilities of loop/ bridge formation after “i” steps, for a 

separation distance of D=100 Kuhn lengths between surfaces, and various 

adsorption energies for monomers on surfaces, between 0.01 kT and 0.1 

kT (in steps of 0.01 kT). 

 

3. RESULTS AND DISCUSSION 
 The number of bridges for a polymer with N=1000 is 

plotted vs. the separation distance between surfaces in Figure 3, 

for various values of A. One can see that the number of bridges 

decreases drastically with increasing adsorption, because a larger 

adsorption increases the number of short loops (the polymer being 

almost completely adsorbed on one surface). This implies that the 

attractive force between surfaces does not vary monotonically 

with A: for A=0 (no adsorption energy), the attractive force 

vanishes. The attraction force is also negligible for strong 

adsorption interactions, because in this case the adsorbing polymer 

collapses on one surface, and does not reach the other one. 

 
Figure 3. Number of bridges formed by one polymer of length N=1000 
Kuhn segments, as a function of the distance between surfaces, and 
various adsorption energies (between 0.01 kT and 0.4 kT, in steps of 0.01 

kT). At D =100, the number of bridges formed decreases with A by about 
10 orders of magnitude. 

The attractive force between plates (calculated as the 
derivative with respect to the distance between the plates of the 
total energy of the most likely polymer configuration, measured in 
units of kT divided by the Kuhn length, is plotted in Figure 4 as a 
function of distance, for various A values. At large separations, the 
force is large for low A values (because of a drastic decrease in the 
number of bridges with increasing A), while at low separations the 
force is in general larger for larger A values.  

 
Figure 4. Attractive forces between surfaces (arbitrary units), as a 
function of the distance between surfaces, for various A values. At large 
separations, large A values correspond to lower forces, but at small 
separations smaller A values provides also lower forces.  
 

 In the extreme case, when the separation between the 

surfaces is only 2 Kuhn segments, the probability of a loop or a 
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bridge formation become equal, and independent of A. At this 

distance, the attraction increases monotonically with A.  

 In general, for larger distances, the force as a function of A 

exhibits a maximum which depends on the distance between 

surfaces, as shown in Figure 5. 

 
Figure 5. Attractive forces between surfaces as functions of A (and 

various distances D) shows that an optimal value of A exists for each 

separation distance. 

 The value of that maximum, as a function of distance, is 

represented in Figure 6. This maximum shows that the long-range 

attractive force between surfaces, due to dilute polymers, can be 

tailored by changing the nature of the polymer (e.g., the adsorption 

energy of monomers on surfaces), in such a manner that the 

flocculation of colloidal suspensions becomes optimal. A too weak 

adsorption energy, as well as a too strong adsorption energy, do 

not generate a significant bridging force. 

 
Figure 6. Adsorption energy that provides the maximum force, as a 
function of the distance at which this force is measured. The strongest 
long-range bridging attraction (at D =100) requires a value of A of about 
0.06 kT. 

4. CONCLUSIONS 
Polymers that adsorb on colloidal particle surfaces can 

create bridges between adjacent particles, and generate long range 
attractions between them, leading to their flocculation. However, 
if the attractive short-range adsorption energy for monomers on a 
surface is too strong, the polymer collapses on one surface, and 
create very few bridges between surfaces; if it is too weak, then 
the long-range attractive forces between colloidal surfaces are also 
weak. A formalism to calculate the bridging interactions between 
particles immersed in a dilute solution of polymers of finite length 

was suggested, based on the calculation of the most likely polymer 
configuration. It was shown that the long-range attractive forces 
between colloidal particles exhibit a maximum, as a function of 
the adsorption energy between monomers and the surface, which 
depends on the separation between adjacent particles. The optimal 
adsorption energy, which maximizes the bridging force at various 
separation distances, was calculated for a dilute solution of 
adsorbing polymers, for which the monomer-monomer and 
monomer-solvent interactions can be neglected. 
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