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ABSTRACT 
The unprecedented increase in the elderly population poses the threat of “ageing tsunami”. Thus, graceful ageing representing the 

healthy life span is of immense importance in the modern world. Mushrooms, harboring numerous bio-active components, appear to be a 

promising anti-ageing agent. Mushroom myco-components’ protective role against cellular ageing mediators, as well as those 

components’ supportive effects for cellular longevity; have been reviewed in this article. Among multiple strategies, the direct life span 

extension of model organisms (Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster) and human cell lines, 

along with oxidative stress attenuating, immune-modulating, anti-ageing, and anti-andropausal effects of mushrooms have been explored 

in this review. Assessment of edible-medicinal mushrooms with respect to their anti-ageing and lifespan promoting capabilities, stand 

them in ideal stead as a therapeutic agent for the global ever-mushrooming aged population. 
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1. INTRODUCTION 
 “Ageing” is an age-old, complex, inter- and multi-

disciplinary concept which, all the living organisms undergo as a 

normal life spanning process [1,2]. It entails a diversified array of 

biochemical, molecular biological, physiological and 

pathophysiological features. It remains unclear whether ageing is 

the cause of physiological alterations, or inevitable effect of the 

pathophysiological abnormalities [1,2]. August Weismann 

proposed that ageing occurs as a response to environmental, 

physiological, and other stressors to which the body is constantly 

exposed [3]. This led to the concept of “stochastic theory of 

ageing” indicating the imbalance between the damaged and 

repaired cellular micro- and macromolecules, in which damaged 

bio-products influence cellular senescence, organ dysfunction, and 

ageing. As he considered ageing to be the gradual increased rate of 

damage to cells and tissues mediated by the free radicals, Harman 

(1955) put forwarded the “free radical theory of ageing”, 

“(FRTA)” [4]. FRTA represented ageing as the gradual increased 

rate of morbidity and mortality along with free radical-induced, 

oxidative stress-mediated damage to cells and tissues. Beckman 

and Ames (1998) proposed a “mitochondrial decline theory of 

ageing” (MDTA) that correlated increased reactive oxygen species 

(ROS) generation by the mitochondrial respiratory chain with 

reduced energy production during cellular ageing [5]. Besides, 

cellular macromolecules, especially proteins, undergo 

configurational and conformational alteration during the ageing 

process. Repair and removal of the altered proteins by ubiquitin is 

essential for cellular functioning. Structural modification of 

proteins leading to misfolding, unfolding, or error-prone 

conformation and configuration have been identified to be 

associated with age-onset degenerative diseases like Alzheimer’s 

and Parkinson’s [6]. However, ageing research involving genetic 

markers has indicated organismal ageing as a predetermined and 

inherent process, much like other genetic information transfer [7]. 

Thus, the “genetic theory of ageing” has emerged. It postulates 

that ageing-specific genes become turned on or off whose 

manifestations are the ageing processes themselves. In addition, 

epigenetic mechanisms involving methylation of DNA and 

histones have also been linked with ageing processes which entail 

the “epigenetic theory of ageing’’ [8]. 

 Among many other theories, the “free radical theory of 

ageing’’ has prevailed over the last few decades despite some 

criticism from several schools of anti-oxidant research [9]. López-

Otín,  Blasco, Partridge, Serrano & Kroemer (2013) have recently 

posited nine “hallmarks of ageing” including genomic instability, 

telomere attrition, epigenetic alterations, loss of proteostasis, 

deregulated nutrient sensing, mitochondrial dysfunction, cellular 

senescence, stem cell exhaustion, and altered intercellular 

communication [10]. Contrary to the previous notion, Gladyshev 

(2013) identified “ageing” as the imperfectness in the biological 

system emanated from non-random biomolecular damage that 

might be inherent, genetic and an inevitable program of life [11]. 

 Although numerous studies have been conducted and more 

are ongoing worldwide, the mechanism of ageing remains a 

mystery. Ageing might not be properly described within the 

boundary of any single theory. It is likely that all theories and 

hallmarks have combined and/or collateral (so-called bystander) 

effects upon ageing, as depicted in Fig. 1. Thus, it is rather apt to 

consider “ageing as a special form of disease whose pathologies 

soars in advanced life’’[12] and anti-ageing agents are supposed to 

withstand, albeit slow down, the pathologies of ageing. Human 

life span has increased globally, and advanced age has become a 

platform for multiple life threatening diseases and multi-morbidity 

[13, 14]. Elderly people negatively impact the labor force and 

economy. Thus, finding an active or graceful ageing agent is an 
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urgent need of the current world, and the quest for graceful ageing 

agent is leading to high-level breakthroughs in modern biological 

research. The present review has been aimed at corroborating 

mushrooms as graceful ageing and healthy life span-promoting 

agents. The information given here would greatly benefit the 

ageing tsunami-affected humanity, their care-givers, personnel 

involved in ageing and age-onset disease studies, as well as 

members of the general public searching for graceful ageing 

agents. 
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Figure 1. Multiple factors mediating ageing and ageing manifestations. 

2. VALIDATION OF MUSHROOM AS A GRACEFUL AGEING AGENT 

 From ancient times, the usage of mushroom in culinary and 

medicinal practice has been practiced [15]. The following section 

interprets the mushroom, through justification of research 

findings, as a graceful ageing agent.  

2.1. Regulation of ageing associated signaling pathways. 

Genomic studies have identified several conserved signaling 

pathways associated with ageing both in model organisms (C. 

elegans, D. melanogaster, mice, rat, chimpanzees) and in humans 

such as insulin/insulin like growth factor (IGF)-1, target of 

rapamycin (TOR) and Silent information regulators (sirtuins) 

signaling [16]. 

a. Insulin/IGF-1 signaling. Insulin/IGF-1 signaling is the 

first pathway identified to be associated with ageing [17]. It senses 

nutrients and its decreased signaling provides enhanced stress 

resistance as well as increased lifespan of the organisms [18, 19]. 

Its lifespan enhancement cascade involves the FOXO transcription 

factor, DAF 16; heat shock transcription factor, HSF-1 and Nrf-

like xenobiotic-response factor SKN-1 [20]. Later on, these 

transcription factors regulate downstream genes involved in life 

span extension such as genes involved in stress resistance proteins 

(catalases, and metallothioneins, glutathione S-transferases) 

peptides, apolipoproteins, chaperones, ion-channels and lipases 

[21]. 

 The regulatory mechanism for life span extension of C. 

elegans is associated with the insulin/IGF-1 signaling pathway that 

includes the trans-membrane receptor DAF-2, intracellular kinases 

and the DAF-16 protein [22]. DAF-16 is a forkhead/winged-helix 

transcript factor involved in the extension of normal life span of C. 

elegans.  DAF-16 mutants have been found to have shorter 

lifespans than their non-mutant counterparts. DAF-2 is another 

homolog of the insulin/IGF-1 receptor, and its mutants have been 

claimed to achieve even up to doubled life span than those of their 

normal counterparts [22]. The entire process has been linked in 

such a way that DAF-2 signals to the DAF-16 through the 

phosphatidylinositol 3-kinase (PI 3-kinase)/Akt pathway. 

Phosphorylation of DAF-16 results in depleted nuclear 

accumulation and a shortened life span for C. elegans [22]. 

 Chuang et al., (2009) studied the comparative cellular 

longevity effects of natural anti-oxidants, such as vitamins E and 

C, the vitamin B-complex group, acetic acid, Ganoderma lucidum 

(polysaccharide fraction, RF3), Anthrodia camphorata and 

Hericium erinaceus extracts on wild-type C. elegans [23]. 

Ganoderma lucidum (RF3 fraction) and the extracts of A. 

camphorata and H. erinaceus extend the lifespan of C. elegans by 

about 20–30%. All mushroom extracts increase the expression of 

the daf-16 gene [23]. In addition, H. erinaceus and acetic acid led 

to a decreased expression of daf-2 [23]. In another study, G. 

lucidum polysaccharide stimulated the transcription of tir-1 and 

rab-1/pmk-1 of the MAPK pathway, thus revealing the co-

ordination between the life span and mitochondrial energy 

metabolism of C. elegans [24]. 

 Ganodermasides A and B, isolated from G. lucidum spores, 

extended the replicative life span (RLS) of S. cerevisiae. They 
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stimulated the expression of the oxidative stress-responsive gene 

uth1 [25]. 

b. TOR signaling. TOR kinase is another nutritent sensor 

whose inhibition increases lifespan extension through heightened 

resistance to stressors [26]. Resveratrol had been identified as a 

cellular longevity increasing agent in S. cerevisiae, C. elegans, D. 

melanogaster and short-lived fishes [27, 28, 29]. Resveratrol 

content of 1.1mg/kg dry weight of P. eryngii has been reported 

[30]. Resveratrol inhibits TOR signaling through Sirt1-

independent mechanism and promoting TOR/DEPTOR interaction 

[31]. 

c. Sirtuins. Sirtuins are the NAD+-dependent protein 

deacetylases involved in caloric restriction mediated cellular 

longevity [32]. In S. cerevisiae, over-expression of Sir2 increases 

the replicative lifespan (RLS) and its deletion decreases RLS [33, 

34]. Sirtuin2 mediated lifespan extension involves reduced 

formation of toxic extrachromosomal rDNA and maintenance of 

telomeric gene silencing [33, 34]. Resveratrol can directly bind at 

the substrate binding site of sirtuins (Sirt1 and Sirt5) and stimulate 

cellular longevity up to 70% through sirt1-dependent deacetylation 

of p53 and sirt2-dependent enhanced DNA stability [27, 35]. 

2.2. Mushroom bio-component mediated life span extension. 

a. Protocatechuic acid. Rahman et al., (2014) showed the 

presence of polyphenol protocatechuic acid in Flammulina 

velutipes (Table 1) [36]. Inclusion of protocatechuic acid (PCA) in 

the medium at 200 µM concentration significantly increased the 

average lifespan of C. elegans from11.76 days up to 16.34 days 

with increased tolerance towards osmotic, thermal (transfer of 

worms containing NGM agar medium from 20°C to 36°C 

temperature for a 10 h) and oxidative stress (addition of 60 mM 

paraquant to the medium for 24 h) [37]. Protocatechuic acid had 

been found potent in withstanding ageing related oxidative stress 

and increasing aged rat’s splenic weight, spleen and liver anti-

oxidative enzymatic (catalase, glutathione peroxidase) levels and 

decrease lipid peroxidation [38].  

b. Caffeic acid. Caffeic acid concentration of 0.34µg/g dry weight 

of S. commune had been reported [39]. Caffeic acid phenyl ester 

(CAPE) also promotes lifespan extension of the C. elegans [40]. 

Medium supplanted with 100µM of CAPE increased median 

lifespan by 9% and maximum lifespan by 17%, respectively [40]. 

This lifespan promotion was performed through activation of the 

redox-sensitive insulin-like signaling pathway DAF-16 [40]. 

CAPE at 100µM concentration, increased nuclear localization of 

the transcription factor DAF-16, lowered cellular ROS level of C. 

elegans by about 50% and increased their thermo tolerance at 

37°C (Table 1) [40]. 

c. Lignan. Lignans are the polyphenolic substances having 

both in vitro and in vivo anti-oxidative effects (Table 1) [41]. 

Medicinal mushroom Anthrodia camphorate has been reported to 

contain lignan [42, 43]. Lignan matairesinol at 100µM has been 

found to increase the life span of C. elegans up to 25% [44]. They 

stimulate translocation and expression of the transcription factor 

DAF-16 and jnk-1[44]. Thus, lignans might be involved in 

lifespan prolonging effect of C. elegans through the JNK-1-DAF-

16 mediated signaling cascade [44]. 

Table 1. Structures of the mushroom bio-components providing graceful ageing. 
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Compound Structure Source Reference 
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Compound Structure Source Reference 
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Compound Structure Source Reference 
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2.3. Experiments in Drosophila melanogaster. In D. 

melanogaster, both edible and medicinal mushroom extracts have 

been found to prolong the life span in a dose- and sex-dependent 

manner, as shown in the following chart [45]: 

Mushroom 
species 

Increased life span 
(%) in male D. 
melanogaster 

Increased life span 
(%) in female D. 

melanogaster 
A. auricular 31.41 

(at 5 mg/ml) 
16.85 

(at 20 mg/ml) 
A. blazei 32.13 

(at 5 mg/ml) 
2.69 

(at 5 mg/ml) 
L. edodes 40.53 

(at 5 mg/ml) 
6.03 

(at 5 mg/ml) 
G. lucidum 42.32 

(at 80 mg/ml) 
29.24% 

(at 5 mg/ml) 
Recently, Zou et al., (2015) reported the oxidative stress 

attenuation-coupled lifespan prolonging effect of C. sinensis upon 

D. melanogaster [46]. Lifelong feeding of C. sinensis oral liquid 

(CSOL) at 0.02, 0.06 and 0.20 mg/ml to the D. melanogaster, 

prolonged the average lifespan of the fruit flies by 25, 31 and 

32%, respectively [46]. CSOL at the same dosage significantly 

increased the activities of anti-oxidant enzymes superoxide 

dismutase 1 (SOD1) and catalase (CAT) and inhibited the 

accumulation of lipofuscin in the fruit fly homognenate [46]. 

Thus, C. sinensis had been found promoting anti-aging effect 

through anti-oxidative mode of action in both physiological and 

pathophysiological states. 

2.4. Experiments upon rodents. Feeding of C. sinensis hot water 

extract ameliorated aging related physiological complications such 

as memory enhancement, anti-oxidative defense and sexual 

functions in D-galactose-induced aged mice [47]. Mice fed hot 

water extract (10 ml/kbw) of C. sinensis had improved memory 

and learning abilities in water maze test [47]. Their blood level of 

anti-oxidative enzymes such as catalase, glutathione peroxidase 

and superoxide dismutase increased along with decreased rate of 

lipid peroxidation and monoamine oxidase activity [47]. Aging is 

associated with decreased desire of sexual functionality. 

Cordyceps sinensis improved sexual desire and function in the 

aged Sprague Dawley rats as evidenced by the decreased penile 

erection latency and mount latency [47]. 

2.5. Cell line studies. Ranging from model organisms, cellular 

longevity extending effects of mushrooms upon human cell lines 

has also been shown to be prospective. Extracts of both G. pfeifferi 

and G. maresome prolong the life span of human amniotic 

epithelial cell line (FL cells, ATCC, CCL 62) [48]. The perfusion 

cell culture study showed an increased longevity of the extracts 

treated cells up to 270 h, compared to 210 h for the controls [48]. 

Neuroactive compounds contained in G. lucidum and G. neo-

japonicum has been reported to potentiate neuritogenic activities 

rat PC12 neuronal cells [49, 50]. The proposed mechanism of 

action entails the Ras/Erk and cAMP-response element-binding 

protein (CREB) signaling pathways, as G. lucidum extracts has 

been found to  induce phosphorylation of Erk 1, Erk 2, and CREB 

[49, 50]. 

H. erinaceus is one of the most studied culinary 

mushroom for its neuro-health giving properties [51]. 

Polysaccharide from its aqueous extract has been reported to 

induce neuronal differentiation and promotion of neuronal survival 

[52]. Responsible bio-active components isolated included 

hericinones from the fruiting bodies and erinacines from the 

mycelium of H. erinaceus (Table 1) [52, 53]. Mild cognitive 

improvement in the H. erinacus-fed Japanese people has also been 

reported [54]. 

2.6. Anti-oxidative effects. Oxidative stress induced modification 

of biomolecules (lipids, protein and DNA) afflict physiological 

normalcy that is manifested through ageing associated diseases 

like cancer, atherosclerosis and Alzheimer’s [55]. Thus, mitigation 

of oxidative stress seems promising in hindering the progression 

of cellular ageing. Both edible and medicinal mushrooms have 

been found to be oxidative stress retardant and thus pro-longevity 

agents. A double-blinded, cross-over intervention study reported 

the anti-oxidant status improving effects of G. lucidum, along with 

no deleterious action towards liver and kidney of the human 

subjects [56]. Ganoderic acids such as 3-oxo-5a-lanosta-8,24-dien-

21-oic acid  and tsugaric acid A, isolated from G. lucidum and G. 

tsugae, respectively, inhibited superoxide anion formation in 
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fMLP/CB-stimulated rat neutrophils and NO production in 

lipopolysaccharide (LPS)/interferon-c (IFN-c)-stimulated N9 

microglial cells (Table 1) [57]. Ganoderic acids have been found 

to help prevent the proliferation of HeLa human cervical 

carcinoma cells. Underpinning mechanisms might involve 

alteration of the expression of the proteins involved in oxidative 

stress and other cellular mechanisms involved in carcinogenesis 

[25]. Sinensine, an alkaloid isolated from the fruiting bodies of G. 

sinense, has been found having ameliorating effect upon hydrogen 

peroxide-induced oxidative stress up on human vascular 

endothelial cell lines (HUVEC, EC50 value 6.2 mmol/L) (Table 1) 

[58]. 

Four polysaccharides (GLP-I, GLP-II, GLP-III and GLP-

IV) extracted from G. lucidum grown on  fermented soybean curd 

residue have shown anti-oxidant activities in a concentration-

dependent manner along with stimulatory effects towards 

macrophage proliferation and NO production [59]. Ganoderma 

lucidum polysaccharide at 0.1, 1.0 and 10 µg/ml has been found to 

help prevent rat cerebral ischemic injury. The mechanism involves 

inhibition of apoptosis through down regulation of the caspase-3 

activity and modulation of the Bcl-2/Bax ratio [60]. Ganoderma 

lucidum polysaccharide at 60, 120 and 180 mg/kg body weight has 

been reported to increase both nonenzymic and enzymic anti-

oxidative defense along with increased serum insulin level and 

decreased lipid peroxidation and blood glucose levels in STZ-

diabetic rats in a dose-dependent fashion [61]. Ganoderma atrum 

polysaccharide, PSG-1, has been reported to have a potent anti-

oxidative, antihyperglycemic, antihyperlipidemic, antitumor 

activity and cardiomyocyte protective effects [62, 63]. PSG-1 

increases SOD, CAT, GPx and glutathione reductase (GSH-Rd) 

activities, and reduced glutathione (GSH) contents in mice brain 

along with causing decreased MDA production and oxidized 

glutathione (GSSG) content [62]. Extract of G. lucidum grown on 

germinated rice, increases the activities of anti-oxidant enzymes 

(SOD, CAT and GPx) in different organs (livers and brains) and 

sera of mice [64]. This might be attributed towards its high 

phenolic and flavonoid contents [64].  

Recently, we reported the in vitro anti-oxidative effect of 

H. erinaceus based on its solvent-solvent partitioned fractions’ 

inhibitory effect upon human low density lipoprotein (LDL) 

oxidation and thereby the anti-atherosclerotic action of it (Figure 

2) [65]. Ergosterol peroxide, a detoxificant of reactive oxygen 

species, present at appreciable amount in H. erinaceus might be 

attributed for this effect [65]. 

 
Figure 2. Anti-oxidative and anti-atherosclerotic effects of Hericium 

erinaceus extract. 

The cyto-protective role of oyster mushrooms (Pleurotus 

spp.) against oxidative stress has been deduced by several studies. 

Oke and Aslim (2011) studied the in vitro anti-oxidant effects of 

the aqueous and methanolic extracts of Pleurotus eryngii and also 

evaluated their effect on the H2O2-induced cellular cytotoxicity. 

The aqueous extract showed better cyto-protective effect as 

evidenced by the 83.1% cell viability at 0.1 mg/ml in the MTT 

assay [66]. However, the ferrous ion chelating ability of the 

methanolic extract surpasses that of aqueous at 1 mg/ml 

concentration [66]. Polyphenolics present in the aqueous as well 

as carotenoid and ascorbic acid content of the methanolic extracts 

have been considered responsible for these effects [66]. Abdullah 

et al., (2012) evaluated the comparative anti-oxidant potency of 

the edible-medicinal mushrooms and based on their relative 

antioxidative performance in percentage scale (100% for 

quercetin, the synthetic anti-oxidant control) graded them with 

individual anti-oxidant index [67]. Among the Pleurotus species, 

they graded the decreasing anti-oxidant index of the species at 10 

mg/ml extract concentration as Pleurotus flabellatus, P. florida, P. 

eryngii, P. sajor-caju, P. cystidiosus [67]. 

Jayakumar et al., (2007) reported that experimentally-

induced, oxidative stress-mediated, multi-disrupted biochemical 

parameters’ profile was ameliorated with the administration P. 

ostreatus extract [68]. Multi-organ specific (heart, kidney and 

liver) tests involving both antioxidative enzymes (CAT, SOD and 

Gpx) and vitamins (C and E) as well as lipid peroxidation and 

GSH, revealed the rejuvenating effect of P. ostreatus in such an 

extent that aged rats’ diminished anti-oxidant status reverted back 

as if they were the young [69, 70]. Thus, the anti-oxidant arsenal 

of P. ostreatus was potent enough to retard oxidation-prone ageing 

processes and relevant physiological disorders. Pleurotus sajor-

caju and P. florida has been reported to ameliorate the oxidative 

modification of the hypercholesterolemic rats [71]. Free radical 

scavenging intracellular polysaccharide (IPS) present in P. 

nebrodensis, P. eryngii and P. cornucopiae enabled these 

mushroom species to be superb anti-oxidant and anti-ageing 

agents [72]. Polysaccharide derived from P. florida-Calocybe 

indica somatic hybrid had also been reported performing 

oxidation-attenuating role (Maity et al., 2011) [73].  

Button mushrooms (Agaricus bisporus) are among the 

most popular culinary macrofungi. Reis et al., (2012) compared 

the in vitro antioxidative and reducing capacities of some common 

mushrooms and found A. bisporus to be the best [74]. 

Comparatively high content of phenolic acids, protocatechuic acid, 

p-coumaric acid and cinnamic acid was supposed to confer this 

effect [74]. In another study, the antioxidative potential of A. 

bitorquis and A. essettei surpassed those of A. bisporus [75]. 

Among others, the lipid peroxidation inhibitory effect of 

Volvariella volvacea has been imparted to the phenolic 

compounds present [76]. Ear mushroom (Auricularia auricula-

judae) has been reported having protective effect upon H2O2-

induced oxidative cellular damage. Auricularia auricula-judae 

extracts (at 0.100 mg/ml) showed 89.5% viability of the baby 

hamster kidney fibroblast cell line (BHK 21) (Oke & Aslim, 2011) 

[66]. 

Thus, both the in vitro and in vivo studies involving 

multiple parameters of antioxidative studies support the oxidation-
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withstanding effects of mushrooms that would promote the 

cellular longevity extending effect of this macrofungi. 

2.7. Immuno-stimulating effects. The immune system of any 

organism becomes weak and prone to numerous diseases as ageing 

continues. The total decline in immunity of the aged individual is 

known as “immune-senescence”, and the process is further 

exacerbated by the impaired communication among immunity-

rendering cells, as well as their reduced responses [77, 78]. 

Sustained immune-senescence leads to the production and 

accumulation of excessive pro-inflammatory cytokines leading 

towards “inflamm-ageing”. Inflamm-ageing is further 

compounded by genetic back-up which paves the way for 

pathogenesis of age-onset inflammatory diseases such as 

Alzheimer’s. Thus, agents capable of retarding immune-

senescence would also aid in healthy ageing.  

The immune-stimulating effect of medicinal mushrooms 

has been performed by stimulating both the innate and adaptive 

immunity [79, 80]. Typically, innate immunity is the first line of 

defense where the phagocytic cells (dendritic cells, monocytes, 

macrophages, mast cells, natural killer cells, NK and 

polymorphonuclear neutrophils, PMN) engulf and/or attenuate the 

invading pathogens or the pathogenic components.  

Mushrooms mediate innate immuno-stimulatory effects through 

their active bio-components such as polysaccharide glucan (both α 

and β) and glycoproteins. Their mode of action involves (i) 

enhanced production of cytokines (IL-10, IL-12p70 and IL-12p40) 

by dendritic cells (DC), (ii) stimulation of natural killer (NK) 

cells, and (iii) higher production of TNF-α, IL-1, IL-6, IL-8, IL-

12p40, and NO, and expression of iNOS by macrophages  [80, 

81]. 

Agaricus bisporus has been reported to enhance the 

production of IFN- γ and thus upgrade the NK cell activity in mice 

along with the increased production of TNF-α and IL-12 [82]. 

Increased secretion of IFN-γ and IL-4 from T-cells through the 

induction of glycosphingolipid derived from P. eryngii have been 

reported [79]. β- D-glucan, extracted from P. pulmonarius and P. 

ostreatus have shown anti-inflammatory and inhibitory effect on 

leukocyte migration, respectively [83]. Agaricus blazei Murill 

(AbM) abounds with proteoglucans and β glucans [84]. These 

glucans are potent stimulators of macrophages, PMN and NK cells 

[84]. Binding of β glucan with the complement receptor 3 (CR3) 

(CD11b ⁄ 18), toll-like receptor 2 (TLR2) and dectin-1 causes the 

receptor stimulation followed by the release of the pro-

inflammatory cytokines, nitric oxide and hydrogen peroxide 

lysosomal enzyme and activation of arachidonic acid metabolism 

[84]. Similar activities have been reported for other mushrooms, 

especially G. lucidum and H. erinaceus [85].  

Adaptive immunity stands as the second line of defense 

and its actions are mediated by humoral and cell mediated sub-

immunological processes. In humoral immunity, B cells produce 

antibody and fight against respective antigens. In cell mediated 

immunity, T cells of multivariate types guard against pathogens. 

For example, helper T cells (Th1 and Th2) produce cytokines, Th1 

activates the macrophages, Th2 stimulates the B cells, and the 

cytotoxic T cells (Tc) lyse the infected cells.  

Myco-components present in mushrooms aid in the 

modulation of both humoral and cell mediated adaptive immunity. 

For instance, lentinan from the L. edodes has been reported by 

Chihara et al., (1986) to act as a T cell adjuvant [86]. Glucan 

derived from Sclerotinia sclerotiorum has been implicated in the 

development of Th1 cells [87]. Fungal immuno-modulatory 

proteins (FIPs) such as Fve, from F. velutipes and Vvo, from V. 

volvaceae stimulate Th1 cells activity and relevant cytokine 

production [88]. Ganoderma lucidum polysaccharide (GLP)-based 

enhanced production and proliferation of B lymphocytes along 

with increased antibody synthesis has also been evidenced [89]. 

Ganoderma lucidum-derived proteoglycan, GLIS, stimulates the 

expression of protein kinase genes, PKC α and PKC γ in B cells 

[90]. Schizophyllan, derived from the mushroom Schizophyllum 

commune has been reported to be equally potent 

immunostimulator as β-D-glucans for both adaptive and innate 

immunity (Table 1). Recently, development of schizophyllan-

based drug delivery system for inflammatory bowel diseases 

(IBD) justifies its suitability and promises new vistas for the 

development of mushroom-based immuno-stimulating and anti-

ageing approaches [91]. 

2.8. Skin anti-ageing property of mushrooms. 

Extracts and nutricosmetics (bio-components ingested 

orally for skin revitalization) and cosmeceuticals (bio-component-

based cosmetics used topically) derived from mushrooms have 

received considerable attraction world-wide [92]. Some of those 

mushroom species and the relevant myco-components’ effect on 

skin revitalization have been depicted in table 2. 

Table 2. Skin anti-ageing effects of mushroom and mushroom bio-components [92]. 

Cosmeceutical/ 
Nutricosmetic 

Effects on skin 
Source 

mushroom 

Schizophyllan 
decreases skin damages originated from UV and toxic component 

exposure 
S. commune 

Polysaccharide 
Enhancing effect upon the skin anti-oxidant enzymes matrix 

metalloproteinase (MMT-1), tissue inhibitor of matrix 
metalloproteinase ( TIMP-1) and collagen levels 

H. erinaceus 

Ganoderic acids Antioxidative and antiageing effect G. lucidum 
Ergothioneine Antioxidative and antiageing effect A. bisporus 

Ceramides Epidermal moisturising effect 
Panellus serotinus, Lyophyllum connatum, 

Amanita pantherina, Sarcodon aspratus and 
Lepista nuda 

Chitin Epidermal moisturising effect G. lucidum,  L. edodes 
β-D-Glucan Antioxidative and antiageing effect A. blazei, G. lucidum L. edodes Pleurotus sp. 
Superoxide 
dismutase 

Anti-fibrosis effect through reverting myofibroblasts back to 
fibroblasts 

L. edodes 

Omega-3, omega- Antioxidative and antiageing effect, inhibition of collagen A. blazei, C. sinensis, P. sajor-caju 
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Cosmeceutical/ 
Nutricosmetic 

Effects on skin 
Source 

mushroom 
6and omega-9 

fatty acids 
breakdown and improvement of cellular functions 

Trehalose Anti-ageing supportive effects 
L. edodes, G. frondosa, Pholiota nameko, 

Auricularia auricular-judae 
Skin lightening 
and anti-ageing 

component 
Anti-tyrosinase activity 

G. lucidum, Anthrodia camphorate, A. 
brasiliensis, Cordyceps militariss 

Skin lightening 
and anti-ageing 

component 
Anti-oxidative, and anti-tyrosinase activity 

Pleurotus abalonus, Pholiota squarrosa, 
Pleurotus nebrodensis 

2.9. Age-onset menopausal problem amelioration. “Male 

menopause”, also called “andropause” and/or “irritable male 

syndrome (IMS)” refers to hormonal, physiological and 

psychological abnormalities due especially to the decreased 

testosterone level or a reduction in the bioavailability of 

testosterone in aged males. About 40% of men in their 40s, 50s, 

and 60s experience some degree of andropause [93]. It has been 

associated with decreased libido, increased irritability, erectile 

dysfunction, depression, lethargy and cognitive dysfunction. 

Chung and Tong (2005) demonstrated the male menopause 

relieving effect of G. lucidum spores [94]. A 3 - week study 

involving 138 male subjects of average 66 years, showed 

significant improvements in all of the menopausal symptoms. 

These findings have reinforced the usage of mushrooms as a 

remedy for male geriatric diseases, including impotency. 

2.10. Other cellular longevity and anti-ageing agents present in 

mushrooms. L-arginine has been suggested to have anti-ageing 

effects [95]. Mushrooms contain moderately high amount of this 

semi-essential or conditionally essential amino acid [96]. Arginine 

content has been reported to be as high as 179 mg, 127 mg and 

116 mg per 100 g of fresh weight for P. ostreatus, L. edodes, and 

A. bisporus, respectively [96]. Thus, arginine-boosted mushrooms 

might come forward in guarding against ageing onslaught.  

Lentinan, isolated from L. edodes, possess antihypertensive and 

antitumor effects while lentinacin and eritadenine have potent 

antihypercholesterolemic effects [97]. 

Selenium, a trace element in human nutrition, has been 

implicated having anti-ageing, anti-oxidant and numerous other 

functions [98]. However, its excessive amount and/or direct 

consumption would be cytotoxic and thus it necessitates 

biotransformation for its optimal and safe action [98]. Mushrooms 

have been proven to be the excellent biotransforming agent of 

selenium [99]. Agaricus bisporus, Boletus edulis and G. lucidum 

have been reported to be top-notch edible-medicinal mushrooms 

in providing anti-ageing trace element, selenium to human 

nutritional supplement [99]. 

 

3. CONCLUSIONS 
Longevity is a multifactorial process that is influenced by genetic, 

biochemical, environmental and other known and unknown 

parameters. Demographical studies indicate that by 2017, the 

number of people over 65 years of age will surpass those under 5 

years. By 2050, about one-fifth of all human beings will be over 

60 years old [100 – 104]. Anxieties arising from the socio-

economic burden of these “old folks” are experienced worldwide 

[105]. Understanding this crucial issue, the WHO coined the term 

‘active ageing’ in the late 1990s and formulated its role under the 

program ‘Active Ageing: a policy framework’ [106, 107].  

Mushrooms rank high as a tool for achieving WHO’s goal of a 

healthy life span [108]. Myriad of bio-active components present 

in them confer their health-promoting as well as polypharmaceutic 

properties [108]. Mushrooms deserve “lifespan promoting” status 

due especially to their cellular longevity, immune-stimulating and 

antioxidative effects. They have also been highly reputed as 

“functional foods”. Thus, as a food-based, safe and efficacious 

anti-ageing agent, the humble mushroom will be a strong help for 

ageing tsunami-affected humanity. Mushrooms fulfill the Greek 

maxim “to die as young as possible as old as possible”. 
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