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ABSTRACT 

Cancer is known as a dangerous disease at cellular and molecular level of organism which necessitates its detection and treatment in 

early stages. With the development of nanomedicine, the fabrication of structures/materials at the range of 1 to 100 nm offers good 

advantage to clinical applications. Among nanostructure, nanobubbles (NBs) have received great attention to overcomes to the 

limitations of low sensitivity and specificity of diagnostics and therapeutics. In addition, NBs have high potential for encapsulating and 

attaching therapeutic agents. Therefore, they can be used as a novel nanostructure in clinical applications. The purpose of this review is 

to focus on the ultrasound NBs and their applications as theranostic agents for cancer therapy. 
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1. INTRODUCTION 

Cancer is known as a dangerous disease at cellular and 

molecular level of organism which necessitates the advanced 

treatments. Irradiation and surgical methods are the early forms 

which are used against this dangerous disease whereas all cancers 

are not curable with these methods due to its metastasis nature, 

incompletely removing cancerous cells and the drug resistance [1-

6]. The resistance of the cancerous cells to chemotherapy is 

proposed because of mechanisms such as the activation of 

alternative signaling pathways, the expression of drug efflux 

pumps (ABC super-family), the evasion of cell apoptosis and the 

increase in DNA repair mechanisms [7]. Conventional therapy for 

cancer is focused on the reduction of tumor mass through surgery 

by anti-cancer drugs. These anti-cancer drugs have the limitations 

such as poor half -life, non-specific biodistribution. Contrast 

agents and radiolabelled molecules show similar non-specific 

distribution pattern as well [8]. 

With the development of nanomedicine, the fabrication of 

structures/materials at the range of 1 to 100 nm offers potential 

advantages to clinical applications [9-19]. In cancer therapy, 

nanostructured materials can circulate in the blood vessels and 

interact with cancerous tissue/cell [20]. Therefore, it is suggested 

that these nanomaterials such as polymeric/lipid nanoparticles 

(NPs) can act as a delivery system by either encapsulating or 

attaching therapeutic agents[21]. Depending on the type of 

delivery system, the release of therapeutic agents from these 

nanostructures can be controlled by either through stimulation of 

local environment (such as pH, temperature) or diffusion of fluids 

into the polymer/lipid matrix [22-27]. Surface and geometry 

properties of nanomaterials also determine the release of 

therapeutic agents and interactions of nanostructured materials 

with cancerous cells [28].Various reports indicate that polymeric 

based theranostic [29-33], lipid based theranostic [34-38], 

inorganic based theranostic [39-43] and hybrid based 

theranostic[44-48] systems have high potential for clinical 

applications. The ultimate goal of these systems is the increase in 

both the diagnostic and therapeutic functions by probing agents. In 

comparison with nanoparticles and nanodroplets that have solid 

and liquid core, respectively, NBs has a gas core. This NB system 

is gas carriers in aqueous solution, with a shell layer containing 

polymers, phospholipids, or possible molecules of therapeutic 

agent encapsulating the gas. The application of ultrasound energy 

on the NB system offers an optimum theranostic function for 

cancer therapy without a need for the encapsulation of contrast 

agent. Totally, nanodroplets form via a lipidic or polymeric shell 

with liquid core whereas a gas core exist in nanobubbles instead of 

liquid core. The presence of gas in the solution results in the 

formation of micorobubbles and nanobubbles[49]. By applying 

ultrasound, liquid of nanodroplets in core can be evaporated and 

changed to gas phase which leads to convertion of  nanodroplets to 

nanobubbles.This review focuses on the theranostic applications 

of ultrasound NBs for cancer therapy with the diagnostic and 

therapeutic functions. 

 

2. NANOBUBBLES 

 NBs are either created by heterogeneous nucleation 

(within two interphases (solid/liquid/gas) [50] or prepared 

homogeneously under atmospheric conditions in the presence of 

gas [51]and may be also generated by the coalescence of 

vacancies in the diameter less than 1µm [52].  Experimental 

studies report that NBs majorly form on hydrophobic solid surface 

which can alter interfacial properties such as lubrication surface 

forces and adsorption [53] and stabilize the colloidal particles 
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[54]. These NBs are experimentally produced by pressure 

release[55] heating [56] solvent-exchange [57-59] and water 

electrolysis [60-62]. It was proposed that interfacial NBs results 

from supersaturation of gas at any interface[63, 64] whilst another 

study suggest  that supersaturation is not required for bubbles 

nucleation[65]. Despite the broad studies on NBs, the mechanisms 

of the whole principles including nucleation, formation, and 

stability of NBs are not well known yet.  

Different parameters are considered to obtain a stable 

system for NBs. These parameters include the molecular 

interaction between the gas core and surrounding fluids (Laplace 

pressure), the components of each bubble system as the dispersed 

phase which interact with the components of the surrounding 

fluids (continuous phase). Gas diffusion between two bubbles is 

related to Ostwald ripening due to the surface tension effect which 

generates a pressure for the gas dissolution and affects the stability 

and preparation of a NB[66]. The stability of NBs depends not 

only on the composition  of surfactant and polymers at the 

interface but also the size and a low density gas in its core which 

are then stabilized by coating materials such as, lipid and synthetic 

polymer (Fig. 1). This property of low density reflects its 

importance in medical applications such as thrombosis treatment 

and site-specific delivery.  

NBs filled with octafluoropropane within the size range of 

450-700 nm exhibited a dose response echo enhancement for 

medical imaging both in vivo[67] and in vitro[68]. NBs containing 

perfluoropentane stabilized by co-polymers can be used as a drug 

delivery enhancer [69] and increase the half-life of NBs. Tumor 

imaging with a system of NBs enhance medical diagnostics due to 

its unique and strong backscattering effects when exposed to 

ultrasound [69, 70]. 

 

3. ULTRASOUND EFFECTS ON NANOBUBBLES  

Ultrasound is a frequency of mechanical vibrations or 

pressure waves which are equal or above that of human hear (20 

kHz) due to its compressional and rarefactional pressure 

fluctuations.  In evaluating tumor, MBs can be used as ultrasound 

contrast agents for perfusion [71], diagnosis [72, 73] and treatment 

response[74-76]. These contrast agents are comprised of a 

polymer/lipid shell and gas filled bubbles which provide contrast 

due to its distinctive quality in the acoustic impedance between the 

gas core and the surrounding fluids. Ultrasound MBs have been 

extensively studied and gained the increased attentions in its 

pharmaceutical applications due to high ability to form 

acoustically induced pores in membrane layer for enhanced 

cellular uptake of drugs [77, 78]. However, the size range of MBs 

(1–10 μm) limits its clinical application because they cannot 

penetrate into tumor tissue through a leaky tumor vasculature due 

to large dimensions. Nanoscale bubble system within the range of 

(1– 500 nm) can accumulate at the tumor endothelium [79, 80] 

and deliver diagnostic and therapeutic agents (drug/gene) for the 

theranostic assessment. 

During the past decades, ultrasound has been employed for 

the tumor treatment using NBs to enhance both imaging of body’s 

tissues/organs and the delivery of drugs to echogenic tissues 

(multiple interface tissues) and hypoechoic (no internal interface). 

Acoustic pressure act on MBs when exposed to an ultrasonic field 

which results in the variation in bubble radius due to the bubble’s 

stiffness and inertia. The bubble behaves as an oscillator with 

stiffness provided by the gas within the bubble and inertia of the 

surrounding fluid. The fluid which surrounds the bubbles provides 

the inertia and moves with the bubble wall. The compression of 

the gas also provides a force that resists its compression. 

Generally, the delivery of drugs to organs and tissues are affected 

by two main ultrasound effects including the cavitation and 

sonoporation effects. The cavitation effect results in the reduction 

of bubble size, whilst the sonoporation effect leads to uptake of 

the reduced bubble.  

3.1. Cavitation Effect. In unresectable tumor, 

radiofrequency (RF) ablation is an invasive procedure in treating 

tumor diseases [81-83]. However; RF ablation have limitations on 

the size and location of the tumor (lesion) which produces variable 

results due to the flow of blood and act as heat sink to the tumor 

vessels [84, 85]. Pluronic is an effective thermosensitizer to 

increase the efficacy of RF ablation on MBs. Pluronic as an 

amhiphilic surfactant has the ability to decrease the size of MBs 

without reducing the echogenicity [69, 86] as shown in Fig. 2. 

An echogenic effect on MBs can create small enough NBs 

to passively extravasate through the gaps in the tumor-associated 

endothelium [87, 88]. Cavitation effects and radiation force are the 

main driving forces behind improved extravasation and convection 

of drugs via the reduction of its carrier (delivery device) when 

exposed to ultrasound as a result of pressure wave passing through 

the media [89].  

As shown in Fig 3, cavitation can become stable (non-

inertial) if acoustic pressure amplitude would be above a threshold 

level, lead to the growth and subsequently explosion of the NBs. 

High temperature and highly reactive radicals may occur during 

the explosion of the bubbles. In addition, cavitation can be 

transient (inertial) if the resulting oscillation which creates a 

circulating shear flow of bubble at the surrounding fluid would be 

proportional to the amplitude[78, 90-92]. 

The change in fluidity can also control the resonant 

response of NBs to the ultrasound irradiation, leads to increment 

of bubble echogenicity [25]. Interestingly, nanodroplets (NDs) are 

nanocarriers which are able to be vaporized and changed to micro-

nano scale gas bubble through the application of ultrasound. The 

particle volume increases upon transition, resulting in decrease in 

droplet shell and favor the release of the therapeutic agent[87, 93]. 

Different reports suggest that the droplet to bubble transition 

causes the release of the therapeutic agent and enhances 

intracellular uptake. 

3.2. Sonoporation. The sonoporation effect is a process in which 

ultrasound is used to alter the permeability of the cell plasma 

membrane and provide a very specific and high concentration of 

drugs at the site of interest while minimizing the overall exposure 

of the drug to other part of the body [94, 95]. Depending on the 



Ultrasound nanobubbles and their applications as theranostic agents in cancer therapy: a review 

Page | 2255 

type of tissue surface, an asymmetrical collapse occurs near the 

surface which eject a liquid at sonic speed towards the surface and 

then pierce the tissue surface[91]. The collapsing bubbles can 

create transient holes in cell membrane and large molecules such 

as nucleotide can be entered into the cells [94, 96]. Generally, this 

mechanism has been demonstrated by experiments [91, 97, 98] 

and proven by theoretical explanation [99]. The collapsing bubble 

is not only dependent on the physical properties of the bubble but 

also the higher intensity and lower frequency of the ultrasound 

which affects its cavitation process [100-102].  

There are four main processes on the sonoporation of NBs 

for the enhanced delivery of therapeutic agent under the influence 

of ultrasound. Firstly, the effect of lowering cavitation threshold 

which creates shears stress and increases the permeability of the 

membrane layer. This effect sets the fluids around NBs in motion 

by creating shock waves for the destruction of NBs along the 

endothelia cell. The increment in permeability of the membrane is 

probably due to membrane transient holes [103]. Secondly, the 

generation of reactive oxygen species (ROS) such as hydrogen or 

hydroxyl radicals and hydrogen peroxide decrease the threshold of 

cavitation and results in the production free radicals which are 

related to cell apoptosis and may enhance the permeability of 

therapeutic agent to the endothelial cells [104, 105]. Thirdly, the 

high pressure of ultrasound which causes the increment in tissues 

temperature and alters membrane bilayer fluidity [106]. Lastly, the 

membrane transport mechanisms, endocytosis/phagocytosis and 

exchange or the fusion such as the phospholipid coated NBs with 

the phospholipid layer of a cell membrane which can also cause 

the delivery of therapeutic agent into the cytoplasm as shown 

schematically in Fig. 4. 

4. APPLICATIONS OF ULTRASOUND NANOBUBBLES TO CANCER THERAPY 

Ultrasound induced cavitation on the bubbles causes 

volume change to bubble and large shear stresses which can alter 

the bilayer structure by creating transient holes for the penetration 

of the therapeutic agent or producing large-scale disruption of the 

entire NBs, leading to instant release of the drug loaded[107]. 

In cancer theranostics, the ability in the detection  and 

treatment of  disease selectively at cellular level requires to the use 

of probe agents such as the luminescent and fluorescent probes 

[108-110], liposomes, micelles, and polymers [111-113], NPs 

[108, 110, 114] and plasmonic gold NPs [115, 116]. These 

systematic probes provide cell theranostics depending on the tune 

ability of each theranostic function (therapy, diagnosis and 

guidance). In delivery applications of ultrasound NBs, therapeutic 

agent can be incorporated into or onto NBs by different ways such 

as association with the bubble’s membrane, binding to ligands 

which are embedded in the membrane and construct multiple 

layers of NBs.  

4.1. Oxygen Loaded Nanobubbles. Hypoxia (acute mild, 

ischemic and chronic) is known to be a critical issue in the 

treatment of tumor tissues [117] including  burns, diabetes and 

wounds due to the low level of oxygen in access for the tissues. 

The principle of laplace pressure on MBs and NBs has developed 

the delivery of therapeutic gases such as oxygen loaded 

microbubbles (OLMBs), oxygen-loaded nanobubbles (OLNBs), 

echogenic liposomes and nanosponges for the treatment of oxygen 

deficiency. Recent research deals with the formulation of oxygen 

bubble at the nanometer range by either coating the bubble with 

dextran or chitosan. Chitosan coated MBs act as an efficient 

oxygen delivery system without any sign of toxicity for human 

blood and Human JEG-3 choriocarcinoma cells [118]. Fan et al 

investigated the disrtibution of NBs in the gastric cancer 

xenograft. The results demonstrated that the NBs were distributed 

through tumor blood vessels into the intercellular tissue spaces 

under the influence of ultrasound which can used for extravascular 

imaging of tumors [119]. As demonstrated by oxymetry and 

revealed by photoacoustic imaging,  in vitro OLNDs filled with 

decafluoropentane gas are known to be more effective than 

ordinary PFP gas in releasing oxygen to hypoxic 

environment[120, 121]. OLND with the shell made of chitosan or 

dextran and 2H,3H-decafluoropentane (DFP) as core oxygen gas 

that is either in liquid  formulations or in a gel formulation 

(enabling decrease in gas diffusion) displays good oxygen 

carrying capacity both in vivo and in vitro. The results suggests 

that ultrasound activation can be an efficient treatment  of hypoxia 

without any toxicity [122]. These same techniques were carried 

out on OLNDs with dextran shell and core fluorocarbon gas. The 

results also demonstrate an efficient in-vitro release by ultrasound 

on human keratinocytes with no sign of toxicity[120]. 

4.2. Drugs Loaded Nanobubbles. Among methods which were 

applied for conjugating drugs to NBs using ultrasound in cancer 

therapy, a report[123] described the use of NBs combined with 

ultrasound to study the cytotoxic effect of two drugs (cisplatin and 

5-FU) on four different cancer cells. Cell sensitivity to drugs 

loaded NBs effectively increased with ultrasound. In another 

study, NBs as contrast agents were prepared using Coumarin-6 as 

a model drug which is analyzed by a sigmoidal fitting of 

pharmacokinetics curve to study the nano-sized bubble’s property 

for ultrasonic imaging and investigate the drug delivery potential 

to cells. The results demonstrated NBs function as an ultrasonic 

contrast agent in the liver region of mouse by presenting a contrast 

effect[124]. 

Theranostic model using a high sensitiveultrasound system 

can target imaging and triggered drug delivery base on applying 

aptamer-conjugated to NB techniques [125]. The results indicated 

that the aptamer provides exceptional binding affinity to tumor 

cells due to the different sizes of the bubbles in blood flow. In 

addition, the theranostic investigation was performed on three 

different groups of mice model by the system in which 

Doxorubicin and methoxypoly(polyethylene glycol) were 

conjugated to PLGA (Dox-PLGA-mPEG) [126]. The system was 

stable after filling with PFP as a result of the PEG shell in the 

form of NDs at a certain temperature. These NDs were 

transformed to NBs and the rate of doxorubicin release seems to 

be proportional to not only the temperature but also the pH and the 

ultrasound effect. In other work, methotrexate (MTX)-loaded NBs 

with PLGA shell were filled with PFC gas and active tumor-

targeting monoclonal anti-HLAG antibodies were further 

conjugated onto the surface of NBs. The NBs systems exhibited 

both in vitr oand in vivo targeted efficiency towards the tumor 

tissues and enhanced ultrasound imaging. Further investigations 

shows that focused ultrasound can promote the release of MTX 

incorporated in the system[127]. Besides, the use of ultrasound 
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radiation (continuous or pulse) leads to an approach of  a bimodal 

cancer treatment which can predict the metastatic cancer [128]. 

The treatment techniques were performed in vitro by exposing 

ultrasound with sorafenib loaded NBs. The results indicated that 

ultrasound ablation facilitate the drug delivery. Likewise, it was 

suggested that this combination might be a novel approach of 

treating liver cancer. Recently Extracorporeal Shock Waves 

(ESWs) have been proposed as a new tool to increase drug release 

from NBs with no side effect of heating.  Like ultrasound, these 

ESWs produce cavitation focalizing with high precision in tissue 

depth. NBs filled with PFP stabilized by glycol chitosan shell were 

designed for the delivery of doxorubicin to anaplastic thyroid 

cancer cell lines to investigate the effect of ESWs on intracellular 

uptake of doxorubicin loaded NBs. The combined treatment of 

ESWs with the NBs demonstrated more cytotoxic effect than free 

doxorubicin, increased nuclear accumulation of doxorubicin, and 

enhanced intracellular uptake of drug-loaded NBs [129]. 

4.3. Nanobubbles as Gene Delivery System. A therapeutic 

procedure in gene therapy which involves the incorporation of 

new genetic material into host is often limited to inefficient 

cellular uptake due to its large size, hydrophilic properties, 

nuclease degradation in the blood and their negatively charged 

phosphate group. Therefore, viral and non-viral vector delivery 

has been developed to overcome these limitations. MBs and NBs 

provide a non-viral for the specific delivery of genetic material 

due to the activation of ultrasound mechanisms which may cause 

tissue damage as a result of ultrasound frequency. 

Therapeutic ultrasound combined with NBs and MBs have 

been investigated for increasing gene transfection efficiency with 

low toxicity and organ specific delivery[130]. Studies exhibited 

that ultrasound is able to deliver genetic materials into the cell 

cytosol. These genetic materials can be incorporated into 

multilayer polymer, liposomes and NPs by either physical or 

chemical interactions onto the bubble surface during fabrication 

(as shown in Fig. 5) and most of the bubble encapsulating DNA 

demonstrated either high loading capacity or transfection 

efficiency[131-133]. 

A report [134] discussed on the preparation and 

characterization of plasmid DNA-loaded chitosan NBs with a gas 

core of PFP which were formed with  a mean diameter less than 

300 nm with positive surface charge. In the study, chitosan was 

selected basically because of its low immunogenicity, 

biocompatibility and its low toxicity. The investigation of DNA 

release with either ultrasound combined NBs or NBs alone is 

observed to affects the experimental cell viability. In Addition, 

Yung et al [135] designed an approach to overcome to Multidrug 

resistance using a NPs-mediated gene silence of chemotherapeutic 

agents export proteins via RNA interference. For the increment of 

drug accumulation in drug resistance cell, DOX-PLGA/PEI/P-gp 

shRNA NBs were designed with an average size of 327 nm. The 

results exhibited that DOX-PLGA/PEI/P-gp shRNA NBs could 

increase cellular uptake of DOX into MCF-7 human breast cancer 

and enhance the cell proliferation suppression effect of DOX 

against MCF-7/ADR cells. The release profile of this NBs system 

demonstrated an efficient Dox release (> 80%) and suggested a 

pH-responsive release which could facilitate the DOX uptake to 

suppress the tumor cell proliferation against the receptors over-

expressed on the tumor surface. In addition, the NBs efficiently 

enhance ultrasound imaging of the cancer cells. Ultrasound 

exposure also enhanced effectivelygene silencing effect of siRNA-

NBs [136], and the co-delivery of siRNA-paclitaxel-NBs [137] 

which were formulated by the  hetero-assembly of both liposomes 

and polymeric micelles caused more level of cancer cell apoptosis 

and an ideal delivery vector for tumor theranostics. Liposome 

bubbles with size range between 150-200 nm in combination with 

ultrasound enhanced tumor specific gene uptake as well [138]. 

Likewise, in the delivery of pDNA and siRNA by the application 

of ultrasound, pDNA-loaded bubble liposomes enhance 

transfection efficiency, membrane stability and ultrasound 

imaging effect in the hind limb ischemia mouse model. The results 

exhibited that pDNA loaded bubble reached to ischemic site and 

delivered bFGF-expressing pDNA by the use of ultrasound [139]. 

4.4. Targeted Nanobubbles. Target delivery can be achieved by 

either active or passive targeting to obtain a high amount cytotoxic 

agent in a specific organ using the modification of therapeutic 

agent conjugated to nano system. NBs in the same approach can 

also undergo surface modification to increase tumor selectivity 

and enhance tumor theranostic. Ligands and receptors can be 

incorporated to the surface of NBs for the specificity delivery of 

therapeutic agents [140]. In a study, Methotrexate (MTX)-loaded 

PLGA NBs filled with PFC gas is also synthesized by double 

emulsion evaporation method and subsequently an active tumor-

targeting anticancer drug is conjugated onto the surface of the 

PLGA NBs. The system exhibited both in vivo and in vitro 

efficient targeted theranostic function [127]. In another research 

approach, the in vivo and in vitro experimental apparatus and rat 

model of VEGFR2-targeted NBs ultrasound contrast agent was 

investigated for the improvement of the contrast effect of 

ultrasound imaging due to the EPR effects at tumor vascular leaks 

[135]. The results demonstrated that the NBs had appropriate size, 

and exhibited a high contrast enhancement performance. Imaging 

results exhibited that the self-made targeted NBs have potential for 

tumor targeting. In addition, the limitations were observed on 

ultrasound imaging due to the low NBs concentration that reaches 

through tumor vessels. Herceptin molecules that were covalently 

attach to PEGylated phospholipid shell NBs indicated success in 

diagnostic and treatment responses. The NBs-Herceptin enhanced 

in-vivo and in-vitro ultrasound contrast in HER2 positive tumor 

and penetrated into the tumor tissue in vivo[141]. Herceptin 

molecules also demonstrated the same ultrasound effect when 

conjugated to only phospholipid shell NBs[142]. 
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Figure 1. The stability differences among bubbles in fluids: Macrobubbles collapse rapidly, Microbubbles gradually decrease in size and may 

eventually collapse, Nanobubbles remain stable and do not burst out at once. 

 
Figure 2. The pluronic effect on Microbubbles leads to the reduction of the bubble size. 

 
Figure 3. Non-inertia and inertia cavitations lead to the reduction of MBs and the formation of a transient pore on the cell membrane. 
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Figure 4. Schematic diagram shows the cavitational effect of microbubbles leading to enhanced uptake of nanobubbles. 

 
Figure 5. The schematic figure shows approach of incorporating genetic material onto NBs: (A) incorporating DNA into polyplexes, lipoplexes, 

liposomes or NPs (B) loading DNA to the external surface of a NBs through non covalent binding (C) incorporation into the shell of a multilayer 

polymer NBs. 

 

4. CONCLUSIONS 

 NBs are proposed as potential nanovehicles for 

theranostic agents for the application in cancer therapy. Different 

parameters such as the molecular interaction between the gas core 

and surrounding fluids are considered to obtain a stable system for 

NBs. The stability of NBs depends on both the composition of 

surfactant and polymers at the interface and the size and a low 

density gas in its core. This property of low density reflects its 

importance in medical applications such as thrombosis treatment 

and site-specific delivery. However, the mechanisms guiding the 

whole principles of NBs are not well known yet.  

Loading and conjugation of therapeutic agents can be also 

conjugated onto and within the NBs structure. In addition, 

receptor-based active targeting of NBs has a great potential to 

become an optimal delivery strategy. Generally, the outlook of 

nanobubbles in cancer therapy looks very promising. Despite rapid 

development in nanomedicine, there are still important challenges 

to provide more accurate data for the hazardsof biomedical 

applications of NBs and admittedly more work still needs to be 

done.
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