Volume 8, Issue 6, 2018, 3644 - 3651

Biointerface Research in Applied Chemistry

www.BiointerfaceResearch.com

Original Research Article

Open Access Journal

ISSN 2069-5837

Received: 29.10.2018 / Revised: 10.12.2018 / Accepted: 12.12.2018 / Published on-line: 15.12.2018

Preparation of five estrone analogs and theoretical analysis of its interaction with aromatase enzyme

Marcela Rosas-Nexticapa¹, Lauro Figueroa-Valverde², Francisco Diaz Cedillo³, Abelardo Camacho-Luis⁴, Virginia Mateu-Armand¹, Socorro Herrera-Meza⁵, Elodia García-Cervera², Eduardo Pool Gómez², Maria Lopez-Ramos², Lenin Hau-Heredia², Raquel Estrella-Barron⁶, Alondra Alfonso-Jimenez², Jhair Cabrera-Tuz², Raquel Noh-Delgado⁶, Alexandrea Mari-Parra¹

¹Facultad de Nutrición, Universidad Veracruzana. Médicos y Odontólogos s/n, 91010, Xalapa, Veracruz. México

²Laboratory of Pharmaco-Chemistry at the Faculty of Chemical Biological Sciences of the University Autonomous of Campeche, Av. Agustín Melgar s/n, Col Buenavista C.P.24039 Campeche Cam., México

³Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional. Prol. Carpio y Plan de Ayala s/n Col. Santo Tomas, México

⁴Escuela de Medicina y Nutrición, Universidad Juárez del de Durango, Av. Universidad s/n esq. Fanny Anitua, C.P. 34000 durango, Dgo, Mexico

⁵Instituto de Investigaciones Psicológicas. Universidad Veracruzana. Av. Dr Luis Castelazo s/n Col. Industrial Animas Xalapa Veracruz, Mexico

⁶Universidad Autonoma del Carmen, Fac. de Ciencias de la Salud, Campus III. Av. Central s/n, Fracc. Mundo Maya, C.P. 24153, Cd. del Carmen Campeche Mexico

*corresponding author e-mail address: *lfiguero@uacam.mx; lauro_1999@yahoo.com*

ABSTRACT

Several aromatase inhibitors have been prepared for treatment of breast cancer; nevertheless, their interaction with enzyme surface is not very clear. Therefore, the objective of this investigation was to synthesize and analyze the theoretical activity of five estrone derivatives (compounds 2-7) on aromatase (4kq8 protein) in a theoretical method using some aromatase antagonist (anastrozole, letrozole and exemestane) as controls. The data found showed that both anastrozole and compound **6** could interact with same aminoacid residues such as Ile_{133} , Phe_{134} , Phe_{221} , Ala_{306} , Asp_{309} , Thr_{310} , Val_{310} , Val_{373} , Met_{374} , Leu_{477} and Ser_{478} that are involved in the 4kq8 protein surface. It is noteworthy that several of these aminoacid residues may be involved in the interaction between 4kq8 protein with compounds **2-5** and **7**, these differences could induce significantly changes in the biological activity of aromatase through of interaction with **6** compared with the compounds **2-5** and **7**. These results indicate that compound **6** could be a good candidate as an aromatase inhibitor which translates as a possible drug for breast cancer.

Keywords: Estrone derivatives, breast cancer, aromatase, docking.

1. INTRODUCTION

Cancer breast is main cause of death in female the worldwide, which could be conditioned by several clinical parameters such as genetic, lifestyle, radiation, weigh, alcohol and others [1]. In addition, some reports have been shown that estrogen levels may predispose to develop breast cancer in women [2-4]; it is noteworthy, that some medicaments are used to breast cancer such as estrogen-receptor inhibitors (tamoxifen and fulvestrant) [5, 6] or aromatase inhibitors (anastrozole, letrozol and exametane) [7]; nevertheless, several drugs can produce some adverse effects [8, 9]. Therefore, a series of drugs have prepared for treatment of breast cancer; for example, the synthesis of piperidine-2,6-dione derivative by the reaction of а phenylpiperidine-2,6-dione analog with sulfuric acid/nitric acid with biological activity against aromatase enzyme [10]. Other report showed the preparation of some aromatase inhibitors (imidazol-1-yl derivatives) from bromomethyl and imidazole

2. EXPERIMENTAL SECTION

Chemical synthesis.

Both 2-nitroestrone and estrone-indole were prepared using previously methods reported [15, 16]. Additionally, other reagents involved in this study were purchased from Sigma-Aldrich Sigma-Aldrich Co., Ltd. The melting point of compounds was assessed using an Electrothermal (900 model). Infrared spectrum (IR) was evaluated using potassium bromide with a Perkin Elmer Lambda 40 apparatus.¹H and ¹³C NMR spectrum was analyzed on a Varian VXR300/5 FT NMR apparatus at 300 and 75.4 MHz (megahertz) in CDCl₃ (deuterated chloroform) using TMS as an internal standard. EIMS spectrum was obtained with a Finnigan Trace Gas

using an *in vitro* model [11]. In addition, a steroid derivative (DTXSID70473247) was prepared from androstenedione via Clemmenson reaction and their biological activity on aromatase was evaluated using placental microsomes [12]. Also, a study shown the preparation of pyridyl-tetralones derivatives through an aldol condensation of 1-tetralones with 4-pyridinecarboxaldehyde as human placental aromatase inhibitors [13]. Other report indicates the preparation and analyze of pharmacological activity of some imidazolyl-coumarins analogs as human placental aromatase inhibitors [14]. These reports suggest that some drugs can block the biological effect of aromatase; nevertheless, their interaction with enzyme surface is very confusing. Therefore, the aim of this study was carried out the synthesis of several estrone derivatives to evaluate their interaction with the aromatase protein (4kq8) using a docking model.

Chromatography Polaris Q-Spectrometer. Elementary analysis was determined using a Perkin Elmer Ser. II CHNS/02400 apparatus.

Preparation of 2-ntro-steroid-indol-4-ol *derivative* Method A:

In a round bottom flask (10 ml), 2-nitroestrone (200 mg, 0.63 mmol), phenylhydrazine hydrochloride (100 mg; 0.69 mmol), and 8 ml of acetic acid:ethanol (3:5) were stirring to reflux for 4 h. The solvent of the mixture obtained was removed under reduced pressure and purified through a crystallization using the methanol:water (4:1) system.

(8aS)-8a-methyl-5-nitro-1,2,6b,7,8,8a,9,14,14a,14b-decahydronaphtho[2',1':4,5]indeno[1,2-b]indol-4-ol (3)

yielding 54 % of **3**; m.p. 118-120 °C; IR (V_{max} , cm⁻¹) 3430, 3400, and 1380: ¹H NMR (500 MHz, Chloroform-*d*) $\delta_{\rm H}$: 1.30-1.54 (m, 9H), 1.60 (s, 3H), 1.66-2.86 (m, 9H), 3.10-3.14 (m, 2H), 6.66 (m, 1H), 7.08-7.42 (m, 4H), 7.86 (m, 1H), 9.00 (broad, 2H) ppm. ¹³C NMR (500 MHz, Chloroform-*d*) $\delta_{\rm C}$: 19.22, 26.74, 27.56, 29.82, 31.12, 35.32, 35.34, 36.78, 44.98, 48.94, 110.82, 114.02, 114.70, 118.22, 119.00, 120.96, 123.58, 125.62, 132.30, 134.32, 134.85, 145.12, 148.48, 153.30 ppm. EI-MS m/z: 388.17 Anal. Calcd. for C₂₄H₂₄N₂O₃: C, 74.21; H, 6.23; N, 7.21; O, 12.36. Found: C, 74.16; H, 6.18.

Method B:

In a round bottom flask (10 ml), indol-estrone (200 mg, 0.51 mmol), anhydride acetic (1ml) and nitric acid (1 ml), were stirring to room temperature for 12 h. crystallization using the methanol:hexane:water (4:2:1) system to give a nitro-steroid-indol derivative (44% yield); ¹H NMR and 13C NMR spectra were determined and were compared with method A product..

In a round bottom flask (10 ml), compound **3** (0.50 mmol), 2hydroxy-1-naphthaldehyde (90 mg, 0.52 mmol), ethylenediamine (60 mg, 0.75 mmol) and 4 ml of acetonitrile:ethanol (3:1) were stirred to reflux temperature for 48 h. The solvent of the mixture obtained was removed under reduced pressure and purified through a crystallization using the methanol:water (4:1) system.

yielding 54 % of **4**, m.p. 76-78 °C; IR (V_{max} , cm⁻¹) 3432, 3398, 1648 and 1380: ¹H NMR (500 MHz, Chloroform-*d*) δ_{H} : 1.30-1.54 (m, 2H), 1.60 (s, 3H), 1.66-1.86 (m, 2H), 1.98 (s, 3H), 2.00-2.06 (m, 4H), 2.50-2.56 (m, 2H), 2.86-3.14 (m, 5H), 3.52 (m, 2H), 6.52 (m, 1H), 6.80 (m, 1H), 7.08-7.22 (m, 2H), 7.24 (m, 1H), 7.26 (m, 1H), 7.32 (m, 1H), 7.42 (m, 1H), 7.58-7.80 (m, 4H), 7.88 (broad, 5H), 8.22 (m, 1H) ppm. ¹³C NMR (500 MHz, Chloroform-*d*) δ_{C} : 23.56, 24.40, 26.74, 27.56, 28.94, 31.13, 35.31, 36.42, 36.78, 45.00, 47.10, 47.32, 48.70, 60.68, 111.64, 113.16, 114.60, 117.50, 117.54, 118.60, 119.30, 119.78, 124.15, 124.24, 125.10, 128.60, 126.88, 128.94, 129.34, 131.44, 136.38, 140.02, 140.75, 140.96, 147.36, 151.02, 152.44, 170.12 ppm. EI-MS m/z: 643.31 Anal. Calcd. for C₃₉H₄₁N₅O₄: C, 72.76; H, 6.42; N, 10.88; O, 9.94. Found: C, 72.68; H, 6.36.

N-{37-methyl-4-oxa-16,19,35-triazanonacyclo[20.18.0. $0^{3,20}$. $0^{5,14}$. $0^{8,13}$. $0^{25,40}$. $0^{26,37}$. $0^{28,36}$. 0^{29} ...1(22),2,5(14),6,8(13),9,11,20,28(36), 20(24) 20 22 dedecement 15 rillocatomide (5)

$\label{eq:constraint} 29(34), 30, 32\text{-dodecaen-15-yl} \\ acetamide \ (5)$

In a round bottom flask (10 ml), compound **4** (0.50 mmol), potassium carbonate (50 mg, 0.36 mmol) and 4 ml of dimethyl sulfoxide were stirred to reflux temperature for 48 h. The solvent of the mixture obtained was removed under reduced pressure and purified through a crystallization using the methanol:hexane:water (4:1:1) system.

yielding 66 % of **5**, m.p. 60-62 °C; IR (V_{max} , cm⁻¹) 3430, 1650 and 1112: ¹H NMR (500 MHz, Chloroform-*d*) δ_{H} : 1.30-1.54 (m, 2H), 1.60 (s, 3H), 1.66-1.86 (m, 2H), 1.96 (s, 3H), 2.00-2.86 (m, 6H), 3.06 (m, 2H), 3.08-3.12 (m, 3H), 3.60 (m, 2H), 4.40 (m, 1H), 6.30-6.36 (m, 2H), 6.96 (m, 1H), 7.00 (broad, 4H), 7.08-7.26 (m, 3H), 7.34 (m, 1H), 7.44 (m, 1H), 7.66-8.06 (m, 4H) ppm. ¹³C NMR (500 MHz, Chloroform-*d*) δ_{C} :23.56, 24.40, 26.74, 27.56, 28.94, 31.13, 35.31, 36.42, 36.78, 44.90, 45.40, 47.32, 48.18, 70.14, 107.63, 111.64, 117.51, 118.60, 119.00, 119.28, 119.78, 121.44, 123.36, 123.73, 124.35, 125.10, 125.78, 128.18, 129.12, 129.22, 129.38, 129.88, 130.14, 137.68, 140.72, 140.75, 147.26, 152.42, 170.12 ppm. EI-MS m/z: 596.31 Anal. Calcd. for C₃₉H₄₀N₄O₂: C, 78.49; H, 6.76; N, 9.39; O, 5.36. Found: C, 78.00; H, 6.70.

6-(N-{37-methyl-4-oxa-16,19,35-triazanonacyclo[20.18.0.0^{3,20}. $0^{5,14}$. $0^{8,13}$. $0^{25,40}$. $0^{26,37}$. $0^{28,36}$. 0^{29} ...1(22),2,5(14),6,8(13),9,11,20, 28(36),29(34),30,32-dodecaen-15-yl}acetamido)hex-5-ynoic acid (6)

In a round bottom flask (10 ml), compound 5 (0.50 mmol), 5hexynoic acid (61 µl, 0.54 mmol), Copper(II) chloride anhydrous (70 mg, 0.52 mmol) in 5 ml of methanol were stirred to room temperature for 48 h. The solvent of the mixture obtained was removed under reduced pressure and purified through a crystallization using the methanol:bencene:water (4:1:1) system. yielding 45 % of 6, m.p. 128.130 °C; IR (V_{max}, cm⁻¹) 3432, 1702, 1650 and 1112: ¹H NMR (500 MHz, Chloroform-*d*) $\delta_{\rm H}$: 1.30-1.54 (s, 3H), 1.58 (s, 3H), 1.66-1.86 (m, 2H), 1.88 (m, 2H), 2.00-2.06 (m, 4H), 2.22 (s, 3H), 2.32 (m, 2H), 2.47 (m, 2H), 2.48 (m, 4H), 2.60-3.12 (m, 5H), 3.22-3.70 (m, 4H), 4.40 (m, 1H), 6.32-6.38 (m, 2H), 6.90 (broad, 4H), 694 (m, 1H), 7.08-7.25 (m, 3H), 7.34 (m, 1H), 7.44 (m, 1H), 7.64-8.06 (m, 4H) ppm. ¹³C NMR (500 MHz, Chloroform-d) δ_C: 15.82, 20.86, 22.04, 24.38, 26.74, 27.56, 28.94, 31.13, 32.60, 35.30, 36.42, 36.78, 43.16, 45.42, 47.32, 47.93, 61.00, 76.74, 87.41, 107.60, 111.64, 117.51, 118.60, 119.00, 119.28, 119.78, 121.22, 123.14, 123.74, 124.32, 125.13, 125.82, 127.13, 129.14, 129.34, 129.60, 130.16, 130.35, 137.68, 140.72, 140.78, 149.42, 152.42, 170.10, 178.40 ppm. EI-MS m/z: 706.35 Anal. Calcd. for C₄₅H₄₆N₄O₄: C, 76.46; H, 6.56; N, 7.93; O, 9.05. Found: C, 76.40; H, 6.50.

2methyl-1-{37-methyl-4-oxa-16,19,35-triazanonacyclo[20.18.0. $0^{3,20}.0^{5,14}.0^{8,13}.0^{25,40}.0^{26,37}.0^{28,36}.0^{29}...1(22),2,5(14),6,8(13),9,11,20, 28(36),29(34),30-32-dodecaen-15-yl}1,3,6-triazacyclododec-2-en-11-yn-7-one (7)$

In a round bottom flask (10 ml), compound **6** (0.5 mmol), ethylenediamine (60 mg, 0.75 mmol), boric acid (40 mg, 0.61 mmol) and 4 ml of methanol were stirred to room temperature for 48 h. The solvent of the mixture obtained was removed under reduced pressure and purified through a crystallization using the methanol:water (4:1) system.

yielding 56 % of 7, m.p. 167-169; IR (V_{max}, cm⁻¹) 3432, 3330, 1650 and 1114: ¹H NMR (500 MHz, Chloroform-*d*) $\delta_{\rm H}$: 1.30-1.54 (s, 3H), 1.57 (m, 1H), 1.58 (m, 2H), 1.60 (s, 3H), 1.66-1.86 (m, 2H), 1.90 (m, 2H), 1.98 (s, 3H), 2.00-2.06 (m, 4H), 2.08 (m, 2H), 2.60-2.86 (m, 2H), 2.90 (m, 2H), 2.94 (m,1H), 3.08-3.12 (m, 3H), 3.22 (m, 2H), 3.58-3.92 (m, 4H), 5.56 (broad, 3H), 6.30-6.34 (m, 2H), 6.88 (m, 1H), 7.08-7.25 (m, 3H), 7.34 (m, 1H), 7.40 (broad, 1H), 7.44 (m, 1H), 7.82-8.04 (m, 4H) ppm. ¹³C NMR (500 MHz, Chloroform-d) δ_{C} : 19.12, 19.90, 24.38, 25.14, 26.77, 27.56, 28.94, 31.13, 35.34, 35.75, 36.42, 36.78, 38.90, 45.20, 45.42, 47.32, 49.50, 57.17, 66.92, 75.78, 81.52, 107.60, 111.60, 117.51, 118.62, 119.00, 119.28, 119.78, 122.00, 123.92, 124.35, 124.50, 125.10, 126.54, 127.55, 128.00, 128.62, 129.40, 129.88, 130.14, 137.68, 140.72, 141.46, 148.22, 150.90, 152.42, 167.60 ppm. EI-MS m/z: 730.39 Anal. Calcd. for C47H50N6O2: C, 77.23; H, 6.89; N, 11.50; O, 4.38. Found: C, 77.18; H, 6.80.

Electronic parameters evaluation (HOMO and LUMO).

The molecular orbitals HOMO and LUMO for all compounds were theoretically evaluated with SPARTAN'06 software package (Wavefunc-tion Inc. Irvine, CA, 2000), using Hartree-fock method at 321-G level [17].

Theoretical evaluation of the interaction between compounds 3 or 7 with aromatase.

Theoretical analysis of interaction of compounds 2-7 on aromatase protein (4kq8) was carried out using a docking program (DockingServer) [18]. In addition, anastrazol, letrozole, exametane were used as controls.

Marcela Rosas-Nexticapa, Lauro Figueroa-Valverde, Francisco Diaz Cedillo, Abelardo Camacho-Luis, Virginia Mateu-Armand, Socorro Herrera-Meza, Elodia García-Cervera, Eduardo Pool Gómez, Maria Lopez-Ramos, Lenin Hau-Heredia, Raquel Estrella-Barron, Alondra Alfonso-Jimenez, Jhair Cabrera-Tuz², Raquel Noh-Delgado, Alexandrea Mari-Parra

3. RESULTS SECTION

Several compounds have prepared as aromatase inhibitors [10-14]; nevertheless, their interaction with enzyme surface is very confusing; therefore, several studies are needed to evaluate this phenomenon. The objective of this study was to synthesize and evaluate their interaction with the aromatase enzyme using a docking model. [18].

First stage

Synthesis of a steroid-indeno-indol-4-ol-acetamide derivative

There are some studies which showed the preparation of several indole analogs using some reagents such as rhodium [19], palladium [20], phosphine [21], Cu(II) [22], Cobalt(III) [23] and others; However, the handling of some of these reagents requires special conditions and they are also very expensive. In this study, a steroid-indeno-indol-4-ol (3) derivative was prepared (Figure 1) by the reaction of 2-nitroestrone with phenylhydrazine in acid medium (Method A) or via nitration of compound 2 (steroid-indole derivative) with nitric acid/anhydride acetic to form 3. It is noteworthy that Method A showed a higher yield compared with Method B. ¹H NMR spectra for 3 shown some bands at 0.64 ppm for methyl group which bound to steroid nucleus; at 1.60 ppm for methyl group; at 1.30-1.54, 1.66-6.66 and 7.85 ppm for steroid nucleus; at 7.09-¹³C NMR 7.43 ppm for indol ring; at 8.96 for hydroxyl group. spectrum for 3 showed some signals at 19.26 ppm for methyl group; at 26.77-48.98, 114.05, 123.56, 132.33-134.33 and 145.09-148.48 ppm for steroid nucleus; at 110.84, 114.72-120.96, 125.60, 134.85 and 153.34 ppm for indol ring. Finally, the mass spectrum from **3** showed a molecular ion (m/z) at 388.17.

Figure 1. Preparation of a 5-nitro-indol-steroid-acetamide derivative (3). Reaction of 2-nitroestrone (1) with phenylhydrazine (Method A) to form 3; also 3 was prepared (Method B) from an indol-estrone derivative (2). i = acetic acid; ii = nitric acid/anhydride acetic; iii = ethanol/rt

Synthesis of naphthalen-nitro-steroid-indol-acetamide complex (4)

There are some studies which indicate the preparation of several acetamide analogs using some reagents such as triazole derived [24], proline [25], 4-(4-morpholinyl)benzenamine [26], hydroxybenzotriazole [27]. However, in this investigation the compound 4 was prepared (Figure 2 and 3) using the multi-component system (compound 3, acetonitrile, 2-Hydroxy-naphthalene-1-carbaldehyde and ethylene- diamine), it should be noted that no special reagent was required for the preparation of 4. The results of ¹H NMR spectrum of **4** shown some bands at 1.30-1.54, 1.66-1.86, 2.00-2.06, 2.85-3.14, 6.52 and 8.22 ppm for steroid moiety; at 1.60 ppm for methyl group bound to steroid nucleus; at 1.98 ppm for methyl bound to amide group; at 2.04, 2.50-2.57 and 3.54 ppm for methylene groups bound to both amino groups; at 6.80 ppm for amide group; at 7.08-7.22, 7.28 and 7.42 ppm for indol ring; at 7.24, 7.32 and 7.58-7.80 ppm for naphthalene group; at 7.88 ppm for both hydroxyl and amino groups. The ¹³C NMR spectra showed chemical shifts at 23.56 ppm for methyl group bound to amide; at 24.38 ppm for methyl group bound to steroid nucleus; at 26.74-45.00, 47.32, 114.60, 124.24, 131.44-140.02 and 147.36 ppm to steroid moiety; at 47.10-48.70 ppm for methylene bound to both amino groups; at 60.68 ppm for methylene group bound to both amide and amino groups; at 111.64, 117.50, 118.60-119.78, 125.10, 140.75 and 152.44 ppm for indole ring; at 113.16, 117.54, 124.15, 126.88-129.34, 140.96 and 151.02 ppm for naphthalene group; at 170.12 ppm for amide group. In addition, **4** showed a molecular ion (m/z) at 643.31.

Figure 2. The *steroid-indeno-indol-4-ol-acetamide* derivative (4) was prepared using the multicomponent system (compound 3, 2-hydroxy-1-naphthaldehyde, ethylenediamine, acetonitrile). iii = acetonitrile:ethanol.

Preparation of a triazanonacyclo-dodecaen-acetamide derivative via etherification (5)

Several ether derivatives have been synthesized through displacement of nitro groups using some reagents such as methoxy groups [28], fluoride ion [29], nitropropane or nitrocyclohexanone [30], sodium phenoxide [31], nitrobenzamide in DMSO [32]. Therefore, the formation of ether group (compound **5**) was carried out by an internal reaction with dimethyl sulfoxide under mild conditions (Figure 3) using previously reports for preparation of ether groups [33].

Figure 3. Reaction mechanism for the formation of 5-nitro-indol-steroid-acetamide derivative (compound 4).

¹H NMR spectra for **5** showed several signals at 1.30-1.54, 1.66-1.86, 2.00-2.86, 3.08-3.12 and 6.30-6.36 ppm for steroid moiety; at 1.60 ppm for methyl group bound to steroid nucleus; at 1.96 ppm for methyl bound to amide group; at 3.06, 3.60 and 4.40 ppm for methylene groups bound to both amino groups; at 7.00 ppm for amino and amide groups; at 7.08-7.26 and 7.44 ppm for indole ring; at 6.96, 7.34 and 7.66-8.06 ppm for naphthalene group. 13 C NMR spectrum for 5 showed several signals at 23.56 ppm for methyl group bound to amide; at 24.40 ppm for methyl group bound to steroid nucleus; at 26.74-36.78, 45.40-47.32, 107.63, 119.00, 129.38 and 130.14-140.72 ppm for steroid moiety; at 44.90 and 48.18-70.14 ppm for methylene groups bound to both amide and amino groups; at 111.64-118.60, 119.28-119.78, 125.19, 140.75 and 152.42 ppm for indol ring; at 121.44, 124.35, 125.78-129.22, 129.88 and 147.26 ppm for naphthalene group; at 170.12 ppm for amide group. Finally, the mass spectrum from 5 showed a molecular ion (m/z) at 596.31.

Addition of an amide derivative (5) to alkyne group to form 6.

There are some reports on addition of amide to alkyne groups using several reagents such as platinum [34], ruthenium [35], nickel [36], Rhodium/Copper [37] palladium(II) [38] and others. In this study, a triazanonacyclo-acetamido-hex-5-ynoic acid derivative (6) was prepared (Figure 3) via reaction of 5 with 5hexynoic acid in presence of Copper(II). ¹H NMR spectra for 6 showed several signals at .130-1.54, 1.66-1.86, 2.00-2.06, 2.60-3.12 and 6.32-6.38 ppm for steroid moiety; at 1.58 ppm for methyl bound to steroid nucleus; at 2.22 for methyl bound to amide group; at 1.88 and 2.32-2.47 ppm for methylene groups bound to both carboxyl and alkyne groups; at 3.22-4.40 ppm for methylene groups bound to both amino and amide groups; at 6.90 ppm for both amino and carboxyl groups; at 6.94, 7.34 and 7.64-8.06 for naphthalene ring; at 7.08-7.25 and 7.44 ppm for indole ring. ¹³C NMR spectra for 6 showed several signals at 15.82-20.86 and 32.60 ppm for methylene groups bound to both alkyne and carboxyl groups; at 24.38 ppm for methyl group bound to amide group; at 22.04 ppm for methyl group bound to steroid nucleus; at 26.74-31.13, 35.30-36-78, 45.42-47.32, 107.60, 119.00, 129.34, 130.16 and 137.68-140.72 ppm for steroid moiety; at 43.26, 47.93 and 76.74 ppm for methylene groups bound to both amide and amino groups; at 61.00 and 87.41 ppm for alkyne group; at 111.64-118.60, 119.28-119.78, 125.13, 140.78 and 150.42 ppm for indole ring; at 121.22-124.32, 125.82-129.14, 129.60 and 130.35-149.42 ppm for naphthalene group; at 170.10 ppm for amide group; at 178.40 ppm for carboxyl group. In addition, 6 showed a molecular ion (m/z) at 706.35.

Figure 3. Steroid-triazanonacyclo-7-one (7). Reaction of a (5-nitro-indol-steroid-acetamide derivative (4) with dimethylsulfoxide (iv) to form a steroid-triazanonacyclo-acetamide (5). Then 5 was reacted with 5-hexynoic acid (v) to formation of the steroid-triazanonacyclo-dodecaen-15-yl}acetamido)hex-5-ynoic acid complex (6). Finally, 6 was reacted with ethylenediamine in presence boric acid (vi).

Preparation of a triazacyclododec-2-en-11-yn-7-one derivative

Several triazacyclododecen analogs have been synthesized using some reagents such as Copper(II) [39], Nickel [40], Iron(III) [41], *n*-butyllithium [42]. In this investigation, **6** reacted with ethylenediamine using boric acid as catalyst (Figure 3) to form the triazacyclododec-2-en-11-yn-7-one (7). It is important to mention that the use of this reagent does not require special conditions. [43]. ¹H NMR spectra for 7 display some signals at 1.30-1.54, 1.66-1.86, 2.00-2.06, 2.60-2.86, 3.08-3.12 and 6.30-6.34 ppm for steroid moiety; at 1.60 ppm for methyl bound to steroid nucleus; at 1.98 ppm for methyl bound to amide group; at 1.58, 1.90, 2.08 and 3.58-3.92 ppm for methylene groups involved in 1,3,6-triazacyclododec-2-en-11-yn-7-one system; at 2.90-2.94 and 3.22 ppm for methylene groups bound to both amino groups; at 5.56 ppm for amino groups; at 7.08-7.25 and 7.44 ppm for indol ring; at 6.88, 7.34 and 7.82-8.04 ppm for naphthalene ring. ¹³C NMR spectrum showed several signals for 7 at 19.12, 25.14, 35.75, 38.90, 45.42-47.32 and 57.17 and 75.788 ppm for methylene groups involved in 1,3,6-triaza-cyclododec-2-en-11-yn-7-one system; at 19.90 ppm for methyl bound to imino group; at 24.38 ppm for methyl bound to steroid nucleus; at 26.77-25.34, 36.42-36.78, 107.60, 119.00, 129.40, 130.14-137.68 and 141.46 ppm for steroid moiety; at 45.20-49.50 and 75.78 ppm for methylene groups bound to both amino groups; at 69.92 and 81.52 ppm for alkyne group; at 111.60-118.62, 119.28-119.78, 125.10, 140.72 and 152.42 ppm for indol ring; at 122.00-124.50, 126.54-128.62 and 148.22 ppm for naphthalene ring; at 150.90 ppm for imino group; at 167.60 ppm for amide group. Additionally, the mass spectrum from **7** display a molecular ion (m/z) at 730.39.

Second stage

Physicochemical parameters of compounds 3-7.

It is noteworthy that some physicochemical factors, such as logP and π have be used to evaluate the degree of lipophilicity of a molecule [44, 45]. It is important to mention, these parameters were determined for compounds 2-7. The results (Table 1 and 2) indicate that logKow and π were higher for compound 7 compared to 2-6, which translates to more lipophilicity degree (Table 1). However, it is noteworthy that this phenomenon could be conditioned by other parameters chemical such as molar volume (V_m) and refractivity molar (R_m) which have been relationship with biological activity of some drugs [48]; these physicochemical factors are tools which can used to identify different chemical characteristics that depend of substituents of a specific molecule. To evaluate both V_{m} and R_{m} descriptors for compounds 2-7 a previously method reported was used [49]; the results showed that V_m and R_m were higher for both 6 and 7 compared with the compounds 2-5 (Table 3). These data suggest that the steric hindrance and the different conformations involved in compounds 6 or 7 could be determining factors in the biological activity exerted by these steroid derivatives in some biological model.

 Table 1. Physicochemical parameters involved in the chemical structure of compounds 2-4.

ompour	lus 2-4.	
	-CH ₃ [aliphatic carbon]	0.5473
	-CH ₂ - [aliphatic carbon]	2.4555
	-CH [aliphatic carbon]	1.0842
	Aromatic Carbon	4.1160
	-OH [hydroxy, aromatic attach]	-0.4802
2	Aromatic Nitrogen [5-member ring]	-0.5262
	-tert Carbon [3 or more carbon attach]	0.2676
	Fused aliphatic ring unit correction	-1.3684
	Equation Constant	0.2290
	π	2.8948
	Log Kow	6.3248
	-CH ₃ [aliphatic carbon]	0.5473
	-CH2- [aliphatic carbon]	2.4555
	-CH [aliphatic carbon]	1.0842
	Aromatic Carbon	4.1160
	-OH [hydroxy, aromatic attach]	-0.4802
	-NO ₂ [nitro, aromatic attach]	-0.1823
	Aromatic Nitrogen [5-member ring]	-0.5262
3	-tert Carbon [3 or more carbon attach]	0.2676
	Ring reaction -> -NO2 with -OH/amino/azo	0.5777
	Fused aliphatic ring unit correction	-1.3684
	Equation Constant	0.2290
	π	0.3954
	Log Kow	6.7202
	-CH ₃ [aliphatic carbon]	1.0946
	-CH ₂ - [aliphatic carbon]	3.4377
	-CH [aliphatic carbon]	1.4456
	-NH- [aliphatic attach]	-2.9924
	Aromatic Carbon	7.0560
	-OH [hydroxy, aromatic attach]	-0.4802
	-N [aliphatic N, one aromatic attach]	-0.9170
4	-NO ₂ [nitro, aromatic attach]	-0.1823
	-C(=O)N [aliphatic attach]	-0.5236
	Aromatic Nitrogen [5-member ring]	-0.5262
	-tert Carbon [3 or more carbon attach]	0.2676
	Ring reaction -> -NO2 with -OH/amino/azo	0.5777
	Fused aliphatic ring unit correction	-1.3684
	Equation Constant	0.2290
	π	0.3979
	LogKow	7.1181

Electronic parameters evaluation of both highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO)

Marcela Rosas-Nexticapa, Lauro Figueroa-Valverde, Francisco Diaz Cedillo, Abelardo Camacho-Luis, Virginia Mateu-Armand, Socorro Herrera-Meza, Elodia García-Cervera, Eduardo Pool Gómez, Maria Lopez-Ramos, Lenin Hau-Heredia, Raquel Estrella-Barron, Alondra Alfonso-Jimenez, Jhair Cabrera-Tuz², Raquel Noh-Delgado, Alexandrea Mari-Parra

There are some reports which suggest that both HOMO) and LUMO are two factors involved in biological activity of some drugs [48]. Therefore, in this investigation both HOMO and LUMO were evaluated (Table 3) using Spartan software [49]. The results showed in table 3 indicated that HOMO values were higher for 6 compared with the compounds 2-5 and 7; these data indicate that 6 exert strong electro donating ability compared with 2-5 and 7. In addition, these results suggest that 6 could induce changes in some biological system compared to 2-5 in a similar way with other types of molecules [48].

It is noteworthy that there are some studies suggest that other physicochemical factors are involved in the activity of several drugs, such as hydrogen bond donor groups. (HBD) and hydrogen bond acceptor groups (HBA) which may exert also changes on some biological system [50]. In this regard, these physicochemical descriptors have been evaluated using some pharmacophore models [51, 52];

human body. However, it is noteworthy that the rule does not predict if a compound could be pharmacologically active; therefore, other type of studies must be carried out to determine the interaction between some compounds with several biological targets such as proteins or enzymes.

It is important to mention that pharmacophores are generally used to evaluate some chemical characteristics that are related with the biological activity of several molecules. Analyzing these data, in this investigation a theoretical study was carried out using a pharmacophore model [53]. The theoretical results (Figure 4-6) showed several hydrogen bond donor groups; such as -OH for the compound 2; -NH- for 3-7. Other theoretical data showed several hydrogen bond acceptor groups such as -NO2 for 2; -OH for both 3 and 4; -NHCO- for 5 and 6; =N- for 7. In addition, other theoretical results (table 3) showed both HBA (< 10) and for HBD (< 5) values for compounds 2 to 7.

Table 3. Ph	ysicochemical	parameters of	compounds 2-7.
-------------	---------------	---------------	----------------

<u>הוה ווה</u>	voiceshamical factors from compounds 57					~			
DIE 2. FII	CIL [alighatic age and and	1.0046			-	Compo	ounds		_
	$-CH_3$ [aliphatic carbon]	1.0946	Parameter	2	3	4	5	6	7
	-CH ₂ - [aliphatic carbon]	3.4377	$V_m(cm^3)$	277.80	289.70	485.50	448.60	520.60	543.60
	-CH [aliphatic carbon]	1.4456	$R_m(cm^3)$	105.56	112.10	189.79	179.20	206.88	215.30
	-NH- [anphatic attach]	-2.9924	Polarizability	69.08	61.237	68.91	86.41	95.10	53.824
	Aromanic Carbon	7.0560	Dipole	7.73	8.97	9.74	4.32	7.59	10.47
	-N [aliphatic N, one aromatic attach]	-0.9170	moment						
	-O- [aliphatic O, two aromatic attach]	0.2923	(debyte)						
	-C(=O)N [aliphatic attach]	-0.5236	PSA (Å ²)	62.818	61.237	91.391	50.091	64.544	53.834
_	Aromatic Nitrogen [5-member ring]	-0.5262	Energy (au)	1247.82	1247.77	2058.06	1855.10	2333.02	2269.74
	-tert Carbon [3 or more carbon attach]	0.2676	HOMO (eV)	-5.97	-6.19	-4 46	-4.50	-3.32	-4.75
	Fused aliphatic ring unit correction	-1.3684	LUMO (eV)	1 10	0.95	0.69	1 14	0.64	1 30
	Equation Constant	0.2290	Gan energy	-7.07	-7.14	-5.15	-5.64	-3.96	-6.05
	π	- 100	eV (HOMO-	7.07	7.14	5.15	5.04	5.70	0.05
	Log Kow	7.4952							
	-CH ₃ [aliphatic carbon]	1.0946		2	2	4	2	2	2
	-CH ₂ - [aliphatic carbon]	4.9110		5	5	4	6	0	0
	-CH [aliphatic carbon]	1.4456	пва	3	3	9	0	ð	ð
	#C [acetylenic carbon]	0.2668							
	-NH- [aliphatic attach]	-1.4962	Compre	HSA HSA	H				
	-N< [aliphatic attach]	-1.8323		¢.	-				
	Aromatic Carbon	7.0560		0*N	NH S	S	1		
	-N [aliphatic N, one aromatic attach]	-0.9170		10-L	300		~		
	-O- [aliphatic O, two aromatic attach]	0.2923		HED PI					
	-COOH [acid, aliphatic attach]	-0.6895	Compe	GBH the					
				the same and the same and					
	-C(=O)N [aliphatic attach]	-0.5236		HBA 6	н				
	-C(=O)N [aliphatic attach] Aromatic Nitrogen [5-member ring]	-0.5236 -0.5262				0	4	Ø	
	-C(=O)N [aliphatic attach] Aromatic Nitrogen [5-member ring] -tert Carbon [3 or more carbon attach]	-0.5236 -0.5262 0.2676	<		H H	P.	1	- P	
	-C(=O)N [aliphatic attach] Aromatic Nitrogen [5-member ring] -tert Carbon [3 or more carbon attach] Fused aliphatic ring unit correction	-0.5236 -0.5262 0.2676 -1.3684	<_			Q.	a de co	F	
	-C(=O)N [aliphatic attach] Aromatic Nitrogen [5-member ring] -tert Carbon [3 or more carbon attach] Fused aliphatic ring unit correction Equation Constant	-0.5236 -0.5262 0.2676 -1.3684 0.2290	<				and the second	C	
	-C(=O)N [aliphatic attach] Aromatic Nitrogen [5-member ring] -tert Carbon [3 or more carbon attach] Fused aliphatic ring unit correction Equation Constant π	-0.5236 -0.5262 0.2676 -1.3684 0.2290 0.3771	<.	HA G OF N			a dec	F	
	-C(=O)N [aliphatic attach] Aromatic Nitrogen [5-member ring] -tert Carbon [3 or more carbon attach] Fused aliphatic ring unit correction Equation Constant π Log Kow	-0.5236 -0.5262 0.2676 -1.3684 0.2290 0.3771 8.2097	Figure 4. Sche	eme represen	nts a pharm	acophore m	odel from b	S ooth compou	nds 2 and
	-C(=O)N [aliphatic attach] Aromatic Nitrogen [5-member ring] -tert Carbon [3 or more carbon attach] Fused aliphatic ring unit correction Equation Constant π Log Kow -CH ₃ [aliphatic carbon]	-0.5236 -0.5262 0.2676 -1.3684 0.2290 0.3771 8.2097 1.0946	Figure 4. Sche 3 using the Li	eme represent gandScout	nts a pharm.	acophore m he model in	odel from b	ooth compour nethyl group	nds 2 and o (yellow)
	-C(=O)N [aliphatic attach] Aromatic Nitrogen [5-member ring] -tert Carbon [3 or more carbon attach] Fused aliphatic ring unit correction Equation Constant π Log Kow -CH ₃ [aliphatic carbon] -CH ₋ [aliphatic carbon]	-0.5236 -0.5262 0.2676 -1.3684 0.2290 0.3771 8.2097 1.0946 5.8932	Figure 4. Sche 3 using the Li hydrogen bond	eme represent gandScout	nts a pharm. software. T (HBA, red)	acophore m he model in , hydrogen	odel from b nvolves a m bond donor	both compour nethyl group r (HBD, gree	nds 2 and o (yellow) en) and a
	-C(=O)N [aliphatic attach] Aromatic Nitrogen [5-member ring] -tert Carbon [3 or more carbon attach] Fused aliphatic ring unit correction Equation Constant π Log Kow -CH ₃ [aliphatic carbon] -CH ₂ - [aliphatic carbon] -CH [aliphatic carbon]	-0.5236 -0.5262 0.2676 -1.3684 0.2290 0.3771 8.2097 1.0946 5.8932 1.4456	Figure 4. Sche 3 using the Li hydrogen bond positive ionizal	eme represent gandScout a l acceptors ble (PI).	nts a pharm software. T (HBA, red)	acophore m he model in , hydrogen	odel from b nvolves a m bond donor	ooth compou hethyl group r (HBD, gre	nds 2 and o (yellow) en) and a
	-C(=O)N [aliphatic attach] Aromatic Nitrogen [5-member ring] -tert Carbon [3 or more carbon attach] Fused aliphatic ring unit correction Equation Constant π Log Kow -CH ₃ [aliphatic carbon] -CH ₂ - [aliphatic carbon] -CH [aliphatic carbon] C [aliphatic carbon]	-0.5236 -0.5262 0.2676 -1.3684 0.2290 0.3771 8.2097 1.0946 5.8932 1.4456 0.9723	Figure 4. Sche 3 using the Li hydrogen bond positive ionizal	eme represent gandScout a d acceptors ble (PI).	tts a pharm software. T (HBA, red)	acophore m he model in , hydrogen	odel from b nvolves a m bond donor	ooth compou nethyl group r (HBD, gre	nds 2 and (yellow) en) and a
	-C(=O)N [aliphatic attach] Aromatic Nitrogen [5-member ring] -tert Carbon [3 or more carbon attach] Fused aliphatic ring unit correction Equation Constant π Log Kow -CH ₃ [aliphatic carbon] -CH ₂ - [aliphatic carbon] -CH [aliphatic carbon] C [aliphatic carbon] C [aliphatic carbon]	-0.5236 -0.5262 0.2676 -1.3684 0.2290 0.3771 8.2097 1.0946 5.8932 1.4456 0.9723 0.2668	Figure 4 . Sche 3 using the Li hydrogen bond positive ionizal	eme represent gandScout a t acceptors ble (PI).	nts a pharm software. T (HBA, red)	acophore m he model in , hydrogen	odel from b nvolves a n bond donor	ooth compou nethyl group r (HBD, gre	nds 2 and (yellow) en) and a
	-C(=O)N [aliphatic attach] Aromatic Nitrogen [5-member ring] -tert Carbon [3 or more carbon attach] Fused aliphatic ring unit correction Equation Constant π Log Kow -CH ₃ [aliphatic carbon] -CH ₂ - [aliphatic carbon] -CH [aliphatic carbon] C [aliphatic carbon] C [aliphatic carbon] -NH, not tert] #C [acetylenic carbon] -NH, [aliphatic attach]	-0.5236 -0.5262 0.2676 -1.3684 0.2290 0.3771 8.2097 1.0946 5.8932 1.4456 0.9723 0.2668 -2.9924	Figure 4. Sche 3 using the Li hydrogen bond positive ionizat	$ \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & \\ & \\ & \\ & $	this a pharm software. T (HBA, red)	acophore m he model in , hydrogen	odel from b nvolves a m bond donor	ooth compou aethyl group r (HBD, gre	nds 2 and (yellow) en) and a
	-C(=O)N [aliphatic attach] Aromatic Nitrogen [5-member ring] -tert Carbon [3 or more carbon attach] Fused aliphatic ring unit correction Equation Constant π Log Kow -CH ₃ [aliphatic carbon] -CH ₂ - [aliphatic carbon] -CH [aliphatic carbon] C [aliphatic carbon] C [aliphatic carbon] -NH- [aliphatic attach] -NK- [aliphatic attach]	-0.5236 -0.5262 0.2676 -1.3684 0.2290 0.3771 8.2097 1.0946 5.8932 1.4456 0.9723 0.2668 -2.9924 -1.8323	Figure 4 . Sche 3 using the Li hydrogen bond positive ionizal	$ \begin{array}{c} & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	ants a pharm software. T (HBA, red)	acophore m he model in , hydrogen	odel from b nvolves a m bond donor	ooth compou hethyl group r (HBD, gree	nds 2 and (yellow) en) and a
	-C(=O)N [aliphatic attach] Aromatic Nitrogen [5-member ring] -tert Carbon [3 or more carbon attach] Fused aliphatic ring unit correction Equation Constant π Log Kow -CH ₃ [aliphatic carbon] -CH ₂ - [aliphatic carbon] -CH [aliphatic carbon] C [aliphatic carbon] C [aliphatic carbon] -NH- [aliphatic attach] -NK- [aliphatic attach] -NK- [aliphatic attach] -NK- [aliphatic attach] -NK- [aliphatic attach]	-0.5236 -0.5262 0.2676 -1.3684 0.2290 0.3771 8.2097 1.0946 5.8932 1.4456 0.9723 0.2668 -2.9924 -1.8323 7.0560	Figure 4. Sche 3 using the Li hydrogen bond positive ionizal	erme represent gandScout s ble (PI).	This a pharm software. T (HBA, red)	acophore m he model in , hydrogen	odel from b nvolves a n bond donor	ooth compou nethyl group r (HBD, gre	nds 2 and (yellow) en) and a
	-C(=O)N [aliphatic attach] Aromatic Nitrogen [5-member ring] -tert Carbon [3 or more carbon attach] Fused aliphatic ring unit correction Equation Constant π Log Kow -CH ₃ [aliphatic carbon] -CH ₂ - [aliphatic carbon] -CH [aliphatic carbon] C [aliphatic carbon] C [aliphatic carbon] -NH- [aliphatic attach] -NK- [aliphatic attach] Aromatic Carbon -N [aliphatic to non-	-0.5236 -0.5262 0.2676 -1.3684 0.2290 0.3771 8.2097 1.0946 5.8932 1.4456 0.9723 0.2668 -2.9924 -1.8323 7.0560 -0.9170	Figure 4. Sche 3 using the Li hydrogen bond positive ionizal	$ \begin{array}{c} & & \\ & \\ & \\ & \\ \\ & \\ \\ \\ \\ \\ \\ \\ \\ $	The second secon	acophore m he model in , hydrogen	odel from b nvolves a m bond donor	ooth compou nethyl group r (HBD, gre	nds 2 and o (yellow) en) and a
	-C(=O)N [aliphatic attach] Aromatic Nitrogen [5-member ring] -tert Carbon [3 or more carbon attach] Fused aliphatic ring unit correction Equation Constant π Log Kow -CH ₃ [aliphatic carbon] -CH ₂ [aliphatic carbon] -CH [aliphatic carbon] C [aliphatic carbon] -NH- [aliphatic attach] -N< [aliphatic attach] Aromatic Carbon -N [aliphatic N, one aromatic attach] -O_ [aliphatic Q two aromatic attach] -O_ [aliphatic Q two aromatic attach]	-0.5236 -0.5262 0.2676 -1.3684 0.2290 0.3771 8.2097 1.0946 5.8932 1.4456 0.9723 0.2668 -2.9924 -1.8323 7.0560 -0.9170 0.2923	Figure 4. Sche 3 using the Li hydrogen bond positive ionizal	$ \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	this a pharm software. T (HBA, red)	acophore m he model ii , hydrogen	odel from b nvolves a n bond donor	ooth compou nethyl group r (HBD, gre	nds 2 and 5 (yellow) en) and a
	-C(=O)N [aliphatic attach] Aromatic Nitrogen [5-member ring] -tert Carbon [3 or more carbon attach] Fused aliphatic ring unit correction Equation Constant π Log Kow -CH ₃ [aliphatic carbon] -CH ₂ - [aliphatic carbon] -CH [aliphatic carbon] -CH [aliphatic carbon] C [aliphatic carbon] -NH- [aliphatic attach] -N< [aliphatic attach] -N< [aliphatic N, one aromatic attach] -O- [aliphatic N, two aromatic attach] -O- [aliphatic N, two aromatic attach] -O- [aliphatic N, two aromatic attach]	-0.5236 -0.5262 0.2676 -1.3684 0.2290 0.3771 8.2097 1.0946 5.8932 1.4456 0.9723 0.2668 -2.9924 -1.8323 7.0560 -0.9170 0.2923 -0.5236	Figure 4. Sche 3 using the Li hydrogen bond positive ionizal	$ \begin{array}{c} & & & \\ & & \\ & & \\ & \\ & \\ \end{array} \end{array} $ there represent gandScout find the form of the second seco	this a pharm software. T (HBA, red)	acophore m he model ir , hydrogen	odel from b nvolves a n bond donor	ooth compou hethyl group r (HBD, gre	nds 2 and 5 (yellow) en) and a
	-C(=O)N [aliphatic attach] Aromatic Nitrogen [5-member ring] -tert Carbon [3 or more carbon attach] Fused aliphatic ring unit correction Equation Constant π Log Kow -CH ₃ [aliphatic carbon] -CH ₂ - [aliphatic carbon] -CH [aliphatic carbon] C [aliphatic carbon] -NH- [aliphatic carbon] -NH- [aliphatic attach] -N< [aliphatic attach] -N< [aliphatic tattach] Aromatic Carbon -N [aliphatic N, one aromatic attach] -O- [aliphatic O, two aromatic attach] -C(=O)N [aliphatic attach] Aromatic Nitrogen [5-member ring]	-0.5236 -0.5262 0.2676 -1.3684 0.2290 0.3771 8.2097 1.0946 5.8932 1.4456 0.9723 0.2668 -2.9924 -1.8323 7.0560 -0.9170 0.2923 -0.5236 -0.5262	Figure 4. Sche 3 using the Li hydrogen bond positive ionizal	eme represent gandScout a l acceptors ble (PI).	this a pharm software. T (HBA, red)	acophore m he model ir , hydrogen	odel from b nvolves a n bond donor	ooth compou nethyl group r (HBD, gre	nds 2 and (yellow) en) and a
	-C(=O)N [aliphatic attach] Aromatic Nitrogen [5-member ring] -tert Carbon [3 or more carbon attach] Fused aliphatic ring unit correction Equation Constant π Log Kow -CH ₃ [aliphatic carbon] -CH ₂ - [aliphatic carbon] -CH [aliphatic carbon] -CH [aliphatic carbon] C [aliphatic carbon] -NH- [aliphatic attach] -N< [aliphatic attach] -N< [aliphatic attach] Aromatic Carbon -N [aliphatic N, one aromatic attach] -O- [aliphatic O, two aromatic attach] -C(=O)N [aliphatic attach] Aromatic Nitrogen [5-member ring] -text Carbon [3 or more acrbon attach]	-0.5236 -0.5262 0.2676 -1.3684 0.2290 0.3771 8.2097 1.0946 5.8932 1.4456 0.9723 0.2668 -2.9924 -1.8323 7.0560 -0.9170 0.2923 -0.5236 -0.5262 0.2676	Figure 4. Sche 3 using the Li hydrogen bond positive ionizal	eme represent gandScout a dacceptors ble (PI).	The second secon	acophore m he model in , hydrogen	odel from b nvolves a n bond donor	ooth compou nethyl group r (HBD, gre	nds 2 and (yellow) en) and a
	-C(=O)N [aliphatic attach] Aromatic Nitrogen [5-member ring] -tert Carbon [3 or more carbon attach] Fused aliphatic ring unit correction Equation Constant π Log Kow -CH ₃ [aliphatic carbon] -CH ₂ - [aliphatic carbon] -CH [aliphatic carbon] -CH [aliphatic carbon] C [aliphatic carbon] -NH- [aliphatic attach] -N< [aliphatic attach] -N< [aliphatic attach] Aromatic Carbon -N [aliphatic N, one aromatic attach] -O- [aliphatic O, two aromatic attach] -C(=O)N [aliphatic attach] Aromatic Nitrogen [5-member ring] -tert Carbon [3 or more carbon attach] -N=C [aliphatic attach]	-0.5236 -0.5262 0.2676 -1.3684 0.2290 0.3771 8.2097 1.0946 5.8932 1.4456 0.9723 0.2668 -2.9924 -1.8323 7.0560 -0.9170 0.2923 -0.5236 -0.5262 0.2676 -0.0010	Figure 4. Sche 3 using the Li hydrogen bond positive ionizal	eme represent gandScout a d acceptors ble (PI).	HBA, red)	acophore m he model in , hydrogen	odel from b nvolves a n bond donor	ooth compou nethyl group r (HBD, gre r	nds 2 and (yellow) en) and a
	-C(=O)N [aliphatic attach] Aromatic Nitrogen [5-member ring] -tert Carbon [3 or more carbon attach] Fused aliphatic ring unit correction Equation Constant π Log Kow -CH ₃ [aliphatic carbon] -CH ₂ - [aliphatic carbon] -CH [aliphatic carbon] -CH [aliphatic carbon] C [aliphatic carbon] -NI- [aliphatic attach] -N< [aliphatic attach] -N< [aliphatic Attach] Aromatic Carbon -N [aliphatic N, one aromatic attach] -O- [aliphatic O, two aromatic attach] -C(=O)N [aliphatic attach] Aromatic Nitrogen [5-member ring] -tert Carbon [3 or more carbon attach] -N=C [aliphatic attach] -N=C [aliphatic attach]	-0.5236 -0.5262 0.2676 -1.3684 0.2290 0.3771 8.2097 1.0946 5.8932 1.4456 0.9723 0.2668 -2.9924 -1.8323 7.0560 -0.9170 0.2923 -0.5236 -0.5262 0.2676 -0.0010 1.3684	Figure 4. Sche 3 using the Li hydrogen bond positive ionizal	eme represent gandScout t acceptors ble (PI).	The second secon	acophore m he model in , hydrogen	odel from b nvolves a m bond donor	ooth compou nethyl group r (HBD, gree	nds 2 and (yellow) en) and a
	-C(=O)N [aliphatic attach] Aromatic Nitrogen [5-member ring] -tert Carbon [3 or more carbon attach] Fused aliphatic ring unit correction Equation Constant π Log Kow -CH ₃ [aliphatic carbon] -CH ₂ - [aliphatic carbon] -CH [aliphatic carbon] -CH [aliphatic carbon] C [aliphatic carbon] -NH- [aliphatic attach] -NK- [aliphatic attach] -N< [aliphatic attach] Aromatic Carbon -N [aliphatic N, one aromatic attach] -O. [aliphatic N, one aromatic attach] -O. [aliphatic O, two aromatic attach] -C(=O)N [aliphatic attach] Aromatic Nitrogen [5-member ring] -tert Carbon [3 or more carbon attach] -N=C [aliphatic ring unit correction C N=C N=C [curvicia structure accreation	-0.5236 -0.5262 0.2676 -1.3684 0.2290 0.3771 8.2097 1.0946 5.8932 1.4456 0.9723 0.2668 -2.9924 -1.8323 7.0560 -0.9170 0.2923 -0.5236 -0.5262 0.2676 -0.0010 -1.3684 0.6000	Figure 4. Sche 3 using the Li hydrogen bond positive ionizal	$ \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	HIS A pharm software. T (HBA, red)	acophore m he model in , hydrogen	odel from b nvolves a m bond donor	ooth compou aethyl group r (HBD, gree	nds 2 and (yellow) en) and a
	-C(=O)N [aliphatic attach] Aromatic Nitrogen [5-member ring] -tert Carbon [3 or more carbon attach] Fused aliphatic ring unit correction Equation Constant π Log Kow -CH ₃ [aliphatic carbon] -CH ₂ [aliphatic carbon] -CH [aliphatic carbon] -CH [aliphatic carbon] C [aliphatic carbon] -NH- [aliphatic attach] -NK- [aliphatic attach] -NK- [aliphatic tatach] Aromatic Carbon -N [aliphatic N, one aromatic attach] -O- [aliphatic N, ore aromatic attach] -O- [aliphatic N, one aromatic attach] -O- [aliphatic N, one aromatic attach] -C(=O)N [aliphatic attach] Aromatic Nitrogen [5-member ring] -tert Carbon [3 or more carbon attach] -N=C [aliphatic attach] Fused aliphatic ring unit correction -C-N=C-N-C- [cyclic] structure correction Equation Constant	-0.5236 -0.5262 0.2676 -1.3684 0.2290 0.3771 8.2097 1.0946 5.8932 1.4456 0.9723 0.2668 -2.9924 -1.8323 7.0560 -0.9170 0.2923 -0.5236 -0.5262 0.2676 -0.0010 -1.3684 -0.6000 0.2300	Figure 4. Sche 3 using the Li hydrogen bond positive ionizal	eme represent gandScout l acceptors ble (PI).	(HBA, red)	acophore m he model in , hydrogen	odel from b nvolves a n bond donor	ooth compou hethyl group r (HBD, gre r (HBD, gre g the Ligand	nds 2 and (yellow) en) and a
,	-C(=O)N [aliphatic attach] Aromatic Nitrogen [5-member ring] -tert Carbon [3 or more carbon attach] Fused aliphatic ring unit correction Equation Constant π Log Kow -CH ₃ [aliphatic carbon] -CH ₂ [aliphatic carbon] -CH [aliphatic carbon] C [aliphatic carbon] -NH- [aliphatic attach] -N<[aliphatic attach] -N<[aliphatic attach] Aromatic Carbon -N [aliphatic N, one aromatic attach] -O- [aliphatic N, one aromatic attach] -O- [aliphatic O, two aromatic attach] -C(=O)N [aliphatic attach] Aromatic Nitrogen [5-member ring] -tert Carbon [3 or more carbon attach] -N=C [aliphatic attach] Fused aliphatic ring unit correction -C-N=C-N-C- [cyclic] structure correction Equation Constant	-0.5236 -0.5262 0.2676 -1.3684 0.2290 0.3771 8.2097 1.0946 5.8932 1.4456 0.9723 0.2668 -2.9924 -1.8323 7.0560 -0.9170 0.2923 -0.5236 -0.5262 0.2676 -0.0010 -1.3684 -0.6000 0.2290 0.5468	Figure 4. Sche 3 using the Li hydrogen bond positive ionizal	eme represent gandScout l acceptors ble (PI).	this a pharm software. T (HBA, red)	acophore m he model in , hydrogen	odel from b nvolves a n bond donor	ooth compou hethyl group r (HBD, gre r (HBD, gre green bod acc	Inds 2 and (yellow) en) and a
	-C(=O)N [aliphatic attach] Aromatic Nitrogen [5-member ring] -tert Carbon [3 or more carbon attach] Fused aliphatic ring unit correction Equation Constant π Log Kow -CH ₃ [aliphatic carbon] -CH ₂ [aliphatic carbon] -CH [aliphatic carbon] C [aliphatic carbon] -NH- [aliphatic attach] -N< [aliphatic attach] -N< [aliphatic attach] Aromatic Carbon -N [aliphatic N, one aromatic attach] -O- [aliphatic N, one aromatic attach] -C(=O)N [aliphatic attach] Aromatic Nitrogen [5-member ring] -tert Carbon [3 or more carbon attach] -N=C [aliphatic attach] Fused aliphatic ring unit correction -C-N=C-N-C- [cyclic] structure correction Equation Constant π Log Kow	-0.5236 -0.5262 0.2676 -1.3684 0.2290 0.3771 8.2097 1.0946 5.8932 1.4456 0.9723 0.2668 -2.9924 -1.8323 7.0560 -0.9170 0.2923 -0.5236 -0.5262 0.2676 -0.0010 -1.3684 -0.6000 0.2290 0.5468 9.7565	Figure 4. Sche 3 using the Li hydrogen bond positive ionizal	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $	this a pharm software. T (HBA, red)	acophore m he model in , hydrogen	odel from b nvolves a n bond donor	the book of the bo	IScout potentions (pen) and a

Here, it is important to mention some studies suggest that both HBD and HBA can condition some pharmacokinetic process of drugs in the human body []; analyzing this hypothesis, the theoretical data found in is study suggest that compounds 2 to 7 could have the ability of penetrate some barrier biological of

Figure 6. Scheme represents a pharmacophore from both compounds 6 and 7 using the LigandScout software. The model involves a methyl group (yellow) hydrogen bond acceptors (HBA, red), hydrogen bond donor (HBD, green) and a positive ionizable (PI).

Evaluation of interaction of compounds 3-7 with aromatase protein (4kq8).

There are some studies that indicate that several substances can interact with some macromolecules which can be translated as the physiological regulation of some enzymes [54]; it is noteworthy that several drugs can exert changes biological activity of specific enzyme. In order, to evaluate this phenomenon some theoretical models have been used to predict the interaction of some drugs with enzymes [55]. Therefore, in this investigation was carried out a theoretical analysis of interaction of compounds **3-7** with aromatase protein (4kq8) [56] using a Docking model [57]. The results shown in figures 7-9 and table 4 indicate the interaction of compounds **2**-7 several with amino acid residues involved in enzyme surface (4kq8).

Figure 7. The scheme shows the binding of compounds 2 and 3 with some aminoacid residues of the aromatase enzyme (4kq8). The visualization was carried out with Dockingserver software.

However, to determine whether compounds **2-7** could act as aromatase inhibitors; also, theoretical interaction of enzyme with some aromatase antagonists, such as anastrozole, letrozole and exemestane was evaluated. The results (Figures 7-9 and Table 4) showed that anastrozole could interact with several aminoacid residues such as Ile₁₃₃, Phe₁₃₄, Phe₂₂₁, Ala₃₀₆, Asp₃₀₉, Thr₃₁₀, Val₃₇₃, Met₃₇₄, Leu₄₇₇ and Ser₄₇₈ which are involved in the aromatase (4kq8 protein) surface. It is noteworthy that also **6** could bind to these types of aminoacid residues; however, only some of these aminoacid residues may participate in the

interaction between 4kq8 protein with compounds 2-5 and 7; this phenomenon could involve other type intramolecular interactions due to changes in the energy levels.

Figure 8. The scheme shows the binding sites of compounds 4 and 5 with some amino acid residues of aromatase enzyme (4kq8). The visualization was carried out with Dockingserver software.

Figure 9. The scheme shows the binding of compounds 6 and 7 with some aminoacid residues of the aromatase enzyme (4kq8). The visualization was carried out with Dockingserver software.

Thermodynamic parameters

There are some reports which indicate that several thermodynamic factors may be involved in the interaction drug-protein [41]; therefore, a theoretical ass was carried out on some thermodynamic parameters involved in the interaction of anastrazol, letrozole, exametane and the compounds **2-7** with the 4kq8 protein such as 1) free energy of binding which determinate the energy value that require a molecule to interact with a protein in a water environment. 2) Electrostatic energy that is the product of electrical charge and electrostatic potential, which are involved in the ligand-protein system [58]; 3) total intermolecular energy and 4) Van der Waals (vdW) + hydrogen bond (Hbond) + desolvation energy (Desolv. Energy; which have an influence on the movement of water molecules into or out of the ligand-protein system) [58] using a theoretical model (dockingserver) [57].

 Table 4. Residues aminoacids involved in the interaction between anastrazol, letrozole, exametane and compounds 2-7 with 4kq8 protein.

Marcela Rosas-Nexticapa, Lauro Figueroa-Valverde, Francisco Diaz Cedillo, Abelardo Camacho-Luis, Virginia Mateu-Armand, Socorro Herrera-Meza, Elodia García-Cervera, Eduardo Pool Gómez, Maria Lopez-Ramos, Lenin Hau-Heredia, Raquel Estrella-Barron, Alondra Alfonso-Jimenez, Jhair Cabrera-Tuz², Raquel Noh-Delgado, Alexandrea Mari-Parra

							,	
Arg ₁₁₅	Arg ₁₁₅	Arg ₁₁₅	Arg ₁₁₅	Ile ₇₀	Ile ₇₀	Ile ₁₃₂	Cys ₇₄	Ile ₇₀
Ile ₁₃₃	Ile ₁₃₃	Ile ₁₃₃	Ile ₁₃₃	Cys ₇₄	Arg ₁₁₅	Ile ₁₃₃	Arg ₁₁₅	Cys ₇₄
Phe ₁₃₄	Phe ₁₃₄	Phe ₁₃₄	Phe ₁₄₈	Ile ₁₃₃	Ile ₁₃₃	Phe ₁₃₄	Ile ₁₃₂	Met ₁₂₇
Phe ₂₂₁	Phe ₂₂₁	Phe ₂₂₁	Trp ₂₂₄	Phe ₁₃₄	Phe ₁₃₄	Phe ₁₄₈	Ile ₁₃₃	Ile ₁₃₃
Ala ₃₀₆	Trp ₂₂₄	Trp ₂₂₄	Glu ₃₀₂	Trp ₂₂₄	Phe ₂₂₁	Leu ₁₅₂	Phe ₁₃₄	Phe ₁₃₄
Asp ₃₀₉	Ala ₃₀₆	Ala ₃₀₆	Ile ₃₀₅	Leu228	Trp ₂₂₄	Phe ₂₂₁	Phe ₁₄₈	Phe ₁₄₈
Thr ₃₁₀	Asp ₃₀₉	Asp ₃₀₉	Ala ₃₀₆	Ile ₃₀₅	Leu228	Trp ₂₂₄	Leu152	Trp ₂₂₄
Val ₃₁₀	Thr ₃₁₀	Thr ₃₁₀	Asp ₃₀₉	Ala ₃₀₆	Asp ₃₀₉	Glu ₃₀₂	Phe ₂₂₁	Glu ₃₀₂
Val ₃₇₃	Val ₃₇₀	Val ₃₆₉	Val ₃₇₀	Asp ₃₀₉	Thr ₃₁₀	Met ₃₀₃	Trp ₂₂₄	Met ₃₀₃
Met ₃₇₄	Leu477	Val ₃₇₃	Leu372	Thr ₃₁₀	Val ₃₆₉	Ile ₃₀₅	Glu ₃₀₂	Ile ₃₀₅
Leu477		Ser ₄₇₈	Met ₃₇₄	Val ₃₇₀	Val ₃₇₀	Ala ₃₀₆	Met ₃₀₃	Ala ₃₀₆
Ser ₄₇₈				Leu372	Leu372	Asp ₃₀₉	Ile ₃₀₅	Thr ₃₁₀
				Val ₃₇₃	Val ₃₇₃	Val ₃₇₀	Ala ₃₀₆	Asp ₃₇₁
				Met ₃₇₄	Met ₃₇₄	Leu ₃₇₂	Asp ₃₀₉	Leu ₃₇₂
				Ile ₃₉₅	Leu ₄₇₇	Val ₃₇₃	Thr ₃₁₀	Met ₃₇₄
				Asn ₃₉₇	Ser ₄₇₈	Met ₃₇₄	Val ₃₇₀	Ile ₃₉₅
				Leu ₄₇₇	His480	Ile ₃₉₈	Asp ₃₇₁	Asn ₃₉₇
					100	Ala438	Leu ₃₇₂	Cys437
						Leu ₄₇₇	Val ₃₇₃	Leu ₄₇₇
						Ser478	Met374	
						170	Ile395	
							Ala438	
							Leu ₄₇₇	
							Ser ₄₇₈	
							4/0	

*Similar residues aminoacids (red); Different residues aminoacids (blue and green).

4. CONCLUSIONS

Theoretical data indicate that compound 6 could be a good candidate as aromatase inhibitor which translates as a possible

5. REFERENCES

[1] Simpson A., Donato D., Kwok A., Agarwal, J., Predictors of complications following breast reduction surgery: A National Surgical Quality Improvement Program study of 16,812 cases, *Journal of Plastic, Reconstructive & Aesthetic Surgery*, pii: S1748-6815(18)30327-9 **2018**.

[2] Knight, W., Livingston, R., Gregory, E., McGuire, W., Estrogen receptor as an independent prognostic factor for early recurrence in breast cancer, *Cancer Research*, *37*, 4669-4671, **1977**.

[3] Ettinger, B., Quesenberry, C., Schroeder, D., Friedman, G., Long-term postmenopausal estrogen therapy may be associated with increased risk of breast cancer: a cohort study. *Menopause*. 25, 1191-1194, **2018**.

[4] Knight, W., Livingston, R., Gregory, E., McGuire, W., Estrogen receptor as an independent prognostic factor for early recurrence in breast cancer. *Cancer research*. *37*(12), 4669-4671, **1977**.

[5] Nuland, M., Vreman, R., Ham, R., Schultink, A., Rosing, H., Schellens, J., Beijnen, J., Hövels, A., Cost-effectiveness of monitoring endoxifen levels in breast cancer patients adjuvantly treated with tamoxifen, *Breast Cancer Research Treatment*. **2018**, Doi: 10.1007/s10549-018-4886-8.

[6] Baselga, J., Im, S., Iwata, H., Cortés, J., De Laurentiis, M., Jiang, Z., Awada, A., Buparlisib plus fulvestrant versus placebo plus fulvestrant in postmenopausal, hormone receptor-positive, HER2-negative, advanced breast cancer (BELLE-2): a randomised, double-blind, placebo-controlled, phase 3 trial. *The Lancet Oncology. 18* (7), 904-916, **2017**.

[7] Ellis, M., Suman, V., Hoog, J., Goncalves, R., Sanati, S., Creighton, C., Luo, J., Ki67 proliferation index as a tool for chemotherapy decisions during and after neoadjuvant aromatase inhibitor treatment of breast cancer: results from the American College of Surgeons Oncology Group Z1031 Trial (Alliance). *Journal of Clinical Oncology*. *35*(10), 1061-1069, **2017**.

[8] Rose, C., Vtoraya, O., Pluzanska, A., Davidson, N., Gershanovich, M., Thomas, R., Ayed, F., An open randomised trial of second-line endocrine therapy in advanced breast cancer: comparison of the aromatase inhibitors letrozole and anastrozole. *European Journal of Cancer.* 39(16), 2318-2327, **2003**.

[9] Benton, A., Ungar, L., Hill, S., Hennessy, S., Mao, J., Chung, A., Holmes, J., Identifying potential adverse effects using the web: A new approach to medical hypothesis generation. *Journal of Biomedical Informatics*. 44(6), 989-996, **2011**.

[10] Hartmann, R., Batzl, C., Aromatase inhibitors. Synthesis and evaluation of mammary tumor inhibiting activity of 3-alkylated 3-(4-aminophenyl) piperidine-2, 6-diones. *Journal of medicinal chemistry*. 29(8), 1362-1369, **1986**.

Table 5. T	hermodynamic	e factors invo	olved in the i	nteraction of	anastrazol,	
letrozole, exametane and compounds 2-7 on aromatase (4kq8).						
Compound	Est. Free	vdW +	Electrostatic	Total	Interact.	
	Energy of	Hbond +	Energy	Intermol.	Surface	
	Binding	desolv.	(kcal/mol)	Energy		
	(kcal/mol)	Energy		(kcal/mol)		
		(kcal/mol)				
Antrazol	-9.58	-11.41	0.01	-11.41	569.117	
Letrozan	-8.67	-9.80	-0.10	-9.90	556.04	
Exemestan	-10.61	-10.73	-0.08	-10.81	511.069	
2	17.88	17.88	-0.30	17.59	613.343	
3	302.49	282.99	-0.25	282.74	907.966	
4	296.90	259.15	-0.09	259.07	872.307	
5	455.63	455 74	-0 41	455 33	901 322	

685.02

927.57

699.38

926.66

6

The results showed in the table 5 indicate that all thermodynamic parameters were higher for compound 6 compared with anastrazol, letrozole, exametane and compounds 2-5; however, these parameters were low in comparison with 7. This phenomenon indicates that there are differences in the energy levels between the interaction of the compounds studied and the 4kq8 protein, which can be translated as changes in the biological activity of aromatase in the presence of 6 in comparison with the compounds 2-5 and 7.

-0.32

-1.35

684 70

926.22

996.294

1018.609

drug for breast cancer. Nevrtheless, it is noteworthy that it is necessary to evaluate their activity in some biological model.

[11] Recanatini, M., Bisi, A., Cavalli, A., Belluti, F., Gobbi, S., Rampa, A., Hartmann, R., A new class of nonsteroidal aromatase inhibitors: design and synthesis of chromone and xanthone derivatives and inhibition of the P450 enzymes aromatase and 17α -hydroxylase/C17, 20-lyase. *Journal of Medicinal Chemistry*. 44(5), 672-680, **2001**.

[12] Cepa, M., Tavares da Silva, E., Correia-da-Silva, G., Roleira, F., Teixeira, N., Structure- Activity Relationships of New A, D-Ring Modified Steroids as Aromatase Inhibitors: Design, Synthesis, and Biological Activity Evaluation. *Journal of Medicinal Chemistry*. *48*(20), 6379-6385, **2005**.

[13] Bayer, H., Batzl, C., Hartman, R., Mannschreck, A., New aromatase inhibitors. Synthesis and biological activity of pyridyl-substituted tetralone derivatives. *Journal of Medicinal Chemistry*. *34*(9), 2685-2691, **1991**.

[14] Stefanachi, A., Favia, A., Nicolotti, O., Leonetti, F., Pisani, L., Catto, M., Carotti, A., Design, synthesis, and biological evaluation of imidazolyl derivatives of 4, 7-disubstituted coumarins as aromatase inhibitors selective over $17-\alpha$ -hydroxylase/C17- 20 lyase. *Journal of Medicinal Chemistry*. 54(6), 1613-1625, **2011**.

[15] Cornelis, A., Laszlo, P., Pennetreau, P., Clay-supported reagents. 5. Nitration of estrone into 2-nitroestrone by clay-supported ferric nitrate. *The Journal of Organic Chemistry*. 48(24), 4771-4772, **1983**.

[16] Lenin, H., Lauro, F., Marcela, R., Socorro, H., Maria, L., Francisco, D., Saidy, E., Design and synthesis of an indol derivative as antibacterial agent against Staphylococcus aureus. *Journal of Chemical Biology*, *10*(4), 159-177, **2017**.

[16] Hladka, I.; Lytvyn, R.; Volyniuk, D.; Gudeika, D.; Grazulevicius, J., W-shaped bipolar derivatives of carbazole and oxadiazole with high triplet energies for electroluminescent devices, *Dyes Pigments*. **2018**, *149*, 812-821.

[17] Mohamed, M., Abdelhamid, A., Almutairi, F., Ali, A., Bishr, M., Induction of apoptosis by pyrazolo [3, 4-d] pyridazine derivative in lung cancer cells via disruption of Bcl-2/Bax expression balance, *Bioorganic & medicinal chemistry*. 26(3), 623-629, **2018**.

[18] Stuart, D., Bertrand-Laperle, M., Burgess, K., Fagnou, K., Indole synthesis via rhodium catalyzed oxidative coupling of acetanilides and internal alkynes, *Journal of the American Chemical Society*. *130*(49), 16474-16475, **2008**.

[19] Takeda, A., Kamijo, S., Yamamoto, Y., Indole synthesis via palladiumcatalyzed intramolecular cyclization of alkynes and imines, *Journal of the American Chemical Society*. *122*(23), 5662-5663, **2000**.

[20] Tran, Y., Kwon, O., An application of the phosphine-catalyzed [4+ 2] annulation in indole alkaloid synthesis: Formal syntheses of (\pm) -alstonerine and (\pm) -macroline, *Organic letters*. 7(19), 4289-4291, **2005**.

Preparation of five estrone analogs and theoretical analysis of its interaction with aromatase enzyme

[21] Hiroya, K., Itoh, S., Sakamoto, T., Development of an efficient procedure for indole ring synthesis from 2-ethynylaniline derivatives catalyzed by Cu (II) salts and its application to natural product synthesis, *The Journal of organic chemistry*. *69*(4), 1126-1136, **2004**.

[22] Du, Y., Liu, R., Linn, G., Zhao, K., Synthesis of N-substituted indole derivatives via PIFA-mediated intramolecular cyclization, *Organic letters*. 8(26), 5919-5922, **2006**.

[23] Liang, Y., Jiao, N., Cationic Cobalt (III) Catalyzed Indole Synthesis: The Regioselective Intermolecular Cyclization of N-Nitrosoanilines and Alkynes, *Angewandte Chemie*. *128*(12), 4103-4107, **2016**.

[24] Yang, L., Bao, X., Synthesis of novel 1, 2, 4-triazole derivatives containing the quinazolinylpiperidinyl moiety and N-(substituted phenyl) acetamide group as efficient bactericides against the phytopathogenic bacterium Xanthomonas oryzae pv. oryzae. *RSC Advances*, 7(54), 34005-34011, **2017**.

[25] Musso, D., Cochran, F., Kelley, J., McLean, E., Selph, J., Rigdon, G., Thompson, J., Indanylidenes. 1. Design and synthesis of (E)-2-(4, 6-difluoro-1-indanylidene) acetamide, a potent, centrally acting muscle relaxant with antiinflammatory and analgesic activity, *Journal of medicinal chemistry*. 46(3), 399-408, **2003**.

[26] Gul, S., Abbasi, M., Khan, K., Nafeesa, K., Siddiqa, A., Akhtar, M., Subhani, Z., Synthesis, antimicrobial evaluation and hemolytic activity of 2-[[5-alkyl/aralkyl substituted-1, 3, 4-oxadiazol-2-yl] thio]-N-[4-(4-morpholinyl) phenyl] acetamide derivatives, *Journal of Saudi Chemical Society*. 21, S425-S433, **2017**.

[27] Kornblum, N., Cheng, L., Kerber, R., Kestner, M., Newton, B., Pinnick, H., Wade, P., Displacement of the nitro group of substituted nitrobenzenes-a synthetically useful process, *The Journal of Organic Chemistry*. *41*(9), 1560-1564, **1976**.

[28] Attiná, M., Cacace, F., Wolf, A., Displacement of a nitro-group by [18 F] fluoride ion. A new route to aryl flurides of high specific activity, *Journal of the Chemical Society, Chemical Communications*. (3), 108-109, **1983**.

[29] Kornblum, N., Boyd, S., Stuchal, F., New reaction of. alpha.-nitro esters, ketones, and nitriles and. alpha., alpha.-dinitro compounds, *Journal of the American Chemical Society*. 92(19), 5783-5784, **1970**.

[30] Crossley, M., King, L., Simpson, J., Solvent-dependent ambident nucleophilicity of phenoxide ion towards nitroporphyrins: synthesis of 2-hydroxyaryl-and 2-aryloxy-5, 10, 15, 20-tetraphenylporphyrins by displacement of a nitro group, *Journal of the Chemical Society, Perkin Transactions 1*. (20), 3087-3096, **1997**.

[31] Beck, J., Nucleophilic displacement of aromatic nitro groups, *Tetrahedron.* 34(14), 2057-2068, **1978**.

[32] Figueroa-Valverde, L., Diaz-Cedillo, F., Garcia-Cervera, E., Pool-Gomez, E., Lopez-Ramos, M., Rosas-Nexticapa, M., Sarabia-Alcocer, B., Facile Synthesis of Two Benzamidinesteroid Derivatives, *Letters in Organic Chemistry*. *11*(10), 725-730, **2014**.

[33] Shimada, T., Nakamura, I., Yamamoto, Y., Intramolecular C- N Bond Addition of Amides to Alkynes Using Platinum Catalyst, *Journal of the American Chemical Society*. *126*(34), 10546-10547, **2004**.

[34] Gooßen, L., Rauhaus, J., Deng, G., Ru-Catalyzed Anti-Markovnikov Addition of Amides to Alkynes: A Regio-and Stereoselective Synthesis of Enamides, *Angewandte Chemie International Edition*. 44(26), 4042-4045, **2005**.

[35] Kajita, Y., Matsubara, S., Kurahashi, T., Nickel-catalyzed decarbonylative addition of phthalimides to alkynes, *Journal of the American Chemical Society*. *130*(19), 6058-6059, **2008**.

[36] Srimontree, W., Chatupheeraphat, A., Liao, H., Rueping, M., Amide to Alkyne Interconversion via a Nickel/Copper-Catalyzed Deamidative Cross-Coupling of Aryl and Alkenyl Amides, *Organic letters*. 19(12), 3091-3094, **2017**.

[37] Hyster, T. K., Rovis, T., Rhodium-catalyzed oxidative cycloaddition of benzamides and alkynes via C- H/N-H activation, *Journal of the American Chemical Society*. *132*(30), 10565-10569, **2010**.

[38] Davis, A. R., Einstein, F., Magnetic exchange interaction via a bridging carbonate anion: crystal and molecular structure of. mu.-carbonato-bis (2, 4, 4, 9-tetramethyl-1, 5, 9-triazacyclododec-1-ene) dicopper (II) perchlorate, *Inorganic Chemistry*. *19*(5), 1203-1207, **1980**.

[39] Ruiz, J., Santana, M., Lozano, A., Vicente, C., García, G., López, G., García, L., Synthesis and characterization of heterotrinuclear complexes of

nickel and palladium with pyridinecarboxylate as bridging ligands, *European journal of inorganic chemistry*. 15, 3049-3056, **2005**.

[40] Dei, A., Gatteschi, D., Pardi, L., Synthesis, characterization, and reactivity of catecholato adducts of iron (III) triaza-and tetraazamacrocyclic complexes: chemical evidence of the role of the metal ion in the oxidative cleavage, *Inorganic Chemistry*. *32*(8), 1389-1395, **1993**.

[41] Benniston, A., Ellis, D., Farrugia, L., Kennedy, R., Peacock, R., Walker, S., The synthesis of small azamacrocycles bearing pendant aromatic functionalities.: The crystal structures of [Cu (L1) 2](PF6) 2,[(L1) CuCl2],[Cu (L6)(NO3) 2] and [Cu2 (L7 H) 2 (OH2) 2](PF6) 2· 3H2O (L1= N-(mesitylethyl)-1, 4, 7-triazacyclononane, L6= N-(4-hydroxymethylbenzyl)-1, 4, 7-triazacylcononane, L7= N-(4-benzylcarboxylic acid)-1, 4, 7-triazacylcononane), *Polyhedron. 21*(3), 333-342, **2002**.

[42] Figueroa, L., Díaz, F., Ceballos, G., Synthesis of pregnenolonepregnenolone dimer via ring A-ring a connection, *J. Mex. Chem. Soc.* 50, 42:45 **2006**.

[43] Leo, A., Jow, P., Silipo, C., Hansch, C., Calculation of hydrophobic constant (log P) from. pi. and f constants, *Journal of Medicinal Chemistry*. *18*(9), 865-868, **1975**.

[44] Leo, A., Hoekman, D., Calculating log P (oct) with no missing fragments; The problem of estimating new interaction parameters, *Perspectives in Drug Discovery and Design*, *18*(1), 19-38, **2000**.

[45] Figueroa-Valverde, L., Díaz-Cedillo, F., Camacho-Luis, A., Ramos, M. L., Cervera, E. G., Synthesis of a dihydrotestosterone–ciprofloxacin conjugate: relationship between descriptors logP, π , R m, and V m and its antibacterial activity in *S. aureus* and *E. coli*, *Monatshefte für Chemie-Chemical Monthly*. 141(3), 373-380, **2010**.

[46] Ertl, P., Rohde, B., Selzer, P., Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties, *Journal of Medicinal Chemistry*. *43*(20), 3714-3717, **2000**.

[47] Figueroa-Valverde, L.; Díaz-Cedillo, F.; Garcia-Cervera, E. J. Chem. 2012, 9, 27-34.

[48] Kim, H., Sulaimon, S., Menezes, S., Son, A., Menezes, W., A comparative study of successful central nervous system drugs using molecular modeling, *Journal of Chemical Education*. 88(10), 1389-1393, **2011**.

[48] El Kerdawy, A., Tautermann, C., Clark, T., Fox, T., Economical and Accurate Protocol for Calculating Hydrogen-Bond-Acceptor Strengths, *Journal of chemical information and modeling*. *53*(12), 3262-3272, **2013**.

[50] Ranu, S., Singh, A., Novel method for pharmacophore analysis by examining the joint pharmacophore space, *Journal of chemical information* and modeling. 51(5), 1106-1121, **2011**.

[51] Koes, D., Camacho, C., Pharmer: efficient and exact pharmacophore search, *Journal of chemical information and modeling*. 51(6), 1307-1314, **2011**.

[52] Wolber, G., Langer, T., LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters, *Journal of chemical information and modeling*. 45(1), 160-169, **2005**.

[53] Andersson, C., Thysell, E., Lindström, A., Bylesjö, M., Raubacher, F., Linusson, A., A multivariate approach to investigate docking parameters' effects on docking performance, *Journal of chemical information and modeling*. *47*(4), 1673-1687, **2007**.

[54] Elokely, K., Doerksen, R., Docking challenge: protein sampling and molecular docking performance, *Journal of chemical information and modeling*. 53(8), 1934-1945, **2013**.

[55] Song, J., Wu, Z., Wangtrakuldee, B., Choi, S., Zha, Z., Ploessl, K., Kung, H., 4-(((4-Iodophenyl) methyl)-4 H-1, 2, 4-triazol-4-ylamino)-benzonitrile: A Potential Imaging Agent for Aromatase, *Journal of medicinal chemistry*. *59*(20), 9370-9380, **2016**.

[56] Chen, L., Chen, X., Chen, X., Hu, Z., Li, X., Su, Y., Ge, R., Ziram inhibits aromatase activity in human placenta and JEG-3 cell line, *Steroids*. *128*, 114-119, **2017**.

[57] Mandell, J., Roberts, V., Pique, M., Kotlovyi, V., Mitchell, J., Nelson,

E., Ten E., Protein docking using continuum electrostatics and geometric fit, *Protein engineering*. *14*(2), 105-113, **2001**.

[58] Thapa, B., Beckett, D., Erickson, J., Raghavachari, K., Theoretical Study of Protein-Ligand Interactions Using the Molecules-in-Molecules Fragmentation-Based Method, *Journal of Chemical Theory Computation*. *14*(10), 5143-5155, **2018**.

© 2018 by the authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).